Omarrran's picture
Update app.py
03ba3c8 verified
raw
history blame
12.9 kB
import os
import json
import nltk
import gradio as gr
from datetime import datetime
from pathlib import Path
import shutil
# Download NLTK data
nltk.download('punkt')
class TTSDatasetCollector:
"""Manages TTS dataset collection and organization"""
def __init__(self):
# Get the directory where app.py is located
self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
self.sentences = []
self.current_index = 0
self.setup_directories()
def setup_directories(self):
"""Create necessary directory structure"""
# Create main dataset directory
self.root_path.mkdir(exist_ok=True)
# Create subdirectories
for subdir in ['audio', 'transcriptions', 'metadata']:
(self.root_path / subdir).mkdir(exist_ok=True)
# Create a log file to track operations
log_file = self.root_path / 'dataset_log.txt'
if not log_file.exists():
with open(log_file, 'w', encoding='utf-8') as f:
f.write(f"Dataset collection started on {datetime.now().isoformat()}\n")
def log_operation(self, message: str):
"""Log operations to keep track of dataset collection"""
log_file = self.root_path / 'dataset_log.txt'
with open(log_file, 'a', encoding='utf-8') as f:
f.write(f"[{datetime.now().isoformat()}] {message}\n")
def load_text_file(self, file):
"""Process and load text file"""
try:
with open(file.name, 'r', encoding='utf-8') as f:
text = f.read()
self.sentences = nltk.sent_tokenize(text)
self.current_index = 0
# Log the file loading
self.log_operation(f"Loaded text file with {len(self.sentences)} sentences")
return True, f"Loaded {len(self.sentences)} sentences"
except Exception as e:
self.log_operation(f"Error loading file: {str(e)}")
return False, f"Error loading file: {str(e)}"
def generate_filenames(self, dataset_name: str, speaker_id: str) -> tuple:
"""Generate unique filenames for audio and text"""
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
sentence_id = f"{self.current_index+1:04d}"
base_name = f"{dataset_name}_{speaker_id}_{sentence_id}_{timestamp}"
return f"{base_name}.wav", f"{base_name}.txt"
def save_recording(self, audio_file, speaker_id: str, dataset_name: str):
"""Save recording and transcription"""
if not audio_file or not speaker_id or not dataset_name:
return False, "Missing required information"
try:
# Generate filenames
audio_name, text_name = self.generate_filenames(dataset_name, speaker_id)
# Create speaker directories
audio_dir = self.root_path / 'audio' / speaker_id
text_dir = self.root_path / 'transcriptions' / speaker_id
audio_dir.mkdir(exist_ok=True)
text_dir.mkdir(exist_ok=True)
# Save audio file
audio_path = audio_dir / audio_name
shutil.copy2(audio_file, audio_path)
# Save transcription
text_path = text_dir / text_name
self.save_transcription(
text_path,
self.sentences[self.current_index],
{
'speaker_id': speaker_id,
'dataset_name': dataset_name,
'timestamp': datetime.now().isoformat(),
'audio_file': audio_name
}
)
# Update metadata
self.update_metadata(speaker_id, dataset_name)
# Log the save operation
self.log_operation(
f"Saved recording: Speaker={speaker_id}, Dataset={dataset_name}, "
f"Audio={audio_name}, Text={text_name}"
)
return True, f"Recording saved successfully as {audio_name}"
except Exception as e:
error_msg = f"Error saving recording: {str(e)}"
self.log_operation(error_msg)
return False, error_msg
def save_transcription(self, file_path: Path, text: str, metadata: dict):
"""Save transcription with metadata"""
content = f"""[METADATA]
Recording_ID: {metadata['audio_file']}
Speaker_ID: {metadata['speaker_id']}
Dataset_Name: {metadata['dataset_name']}
Timestamp: {metadata['timestamp']}
[TEXT]
{text}
"""
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
def update_metadata(self, speaker_id: str, dataset_name: str):
"""Update dataset metadata file"""
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
try:
if metadata_file.exists():
with open(metadata_file, 'r') as f:
metadata = json.load(f)
else:
metadata = {'speakers': {}, 'last_updated': None}
# Update speaker data
if speaker_id not in metadata['speakers']:
metadata['speakers'][speaker_id] = {
'total_recordings': 0,
'datasets': {}
}
if dataset_name not in metadata['speakers'][speaker_id]['datasets']:
metadata['speakers'][speaker_id]['datasets'][dataset_name] = {
'recordings': 0,
'sentences': len(self.sentences),
'first_recording': datetime.now().isoformat(),
'last_recording': None
}
# Update counts and timestamps
metadata['speakers'][speaker_id]['total_recordings'] += 1
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recordings'] += 1
metadata['speakers'][speaker_id]['datasets'][dataset_name]['last_recording'] = \
datetime.now().isoformat()
metadata['last_updated'] = datetime.now().isoformat()
# Save updated metadata
with open(metadata_file, 'w') as f:
json.dump(metadata, f, indent=2)
self.log_operation(f"Updated metadata for {speaker_id} in {dataset_name}")
except Exception as e:
error_msg = f"Error updating metadata: {str(e)}"
self.log_operation(error_msg)
print(error_msg)
def create_interface():
"""Create Gradio interface for TTS data collection"""
collector = TTSDatasetCollector()
with gr.Blocks(title="TTS Dataset Collection Tool") as interface:
gr.Markdown("# TTS Dataset Collection Tool")
with gr.Row():
# Left column - Configuration
with gr.Column():
file_input = gr.File(
label="Upload Text File (.txt)",
file_types=[".txt"]
)
speaker_id = gr.Textbox(
label="Speaker ID",
placeholder="Enter unique speaker identifier"
)
dataset_name = gr.Textbox(
label="Dataset Name",
placeholder="Enter dataset name"
)
# Right column - Recording
with gr.Column():
current_text = gr.Textbox(
label="Current Sentence",
interactive=False
)
audio_recorder = gr.Audio(
label="Record Audio",
type="filepath"
)
next_text = gr.Textbox(
label="Next Sentence",
interactive=False
)
# Controls
with gr.Row():
prev_btn = gr.Button("Previous")
next_btn = gr.Button("Next")
save_btn = gr.Button("Save Recording", variant="primary")
# Status
with gr.Row():
progress = gr.Textbox(
label="Progress",
interactive=False
)
status = gr.Textbox(
label="Status",
interactive=False
)
# Dataset Info
with gr.Row():
dataset_info = gr.JSON(
label="Dataset Statistics",
value={}
)
def update_dataset_info():
"""Update dataset statistics display"""
try:
metadata_file = collector.root_path / 'metadata' / 'dataset_info.json'
if metadata_file.exists():
with open(metadata_file, 'r') as f:
return json.load(f)
return {}
except Exception:
return {}
# Event handlers
def load_file(file):
if not file:
return {
current_text: "",
next_text: "",
progress: "",
status: "No file selected",
dataset_info: update_dataset_info()
}
success, msg = collector.load_text_file(file)
if not success:
return {
current_text: "",
next_text: "",
progress: "",
status: msg,
dataset_info: update_dataset_info()
}
return {
current_text: collector.sentences[0],
next_text: collector.sentences[1] if len(collector.sentences) > 1 else "",
progress: f"Sentence 1 of {len(collector.sentences)}",
status: msg,
dataset_info: update_dataset_info()
}
def update_display():
"""Update interface display"""
if not collector.sentences:
return {
current_text: "",
next_text: "",
progress: "",
status: "No text loaded",
dataset_info: update_dataset_info()
}
next_idx = collector.current_index + 1
return {
current_text: collector.sentences[collector.current_index],
next_text: collector.sentences[next_idx] if next_idx < len(collector.sentences) else "",
progress: f"Sentence {collector.current_index + 1} of {len(collector.sentences)}",
status: "Ready for recording",
dataset_info: update_dataset_info()
}
def next_sentence():
"""Move to next sentence"""
if collector.sentences and collector.current_index < len(collector.sentences) - 1:
collector.current_index += 1
return update_display()
def prev_sentence():
"""Move to previous sentence"""
if collector.sentences and collector.current_index > 0:
collector.current_index -= 1
return update_display()
def save_recording(audio, spk_id, ds_name):
"""Handle saving recording"""
if not audio:
return {status: "No audio recorded", dataset_info: update_dataset_info()}
if not spk_id:
return {status: "Speaker ID required", dataset_info: update_dataset_info()}
if not ds_name:
return {status: "Dataset name required", dataset_info: update_dataset_info()}
success, msg = collector.save_recording(audio, spk_id, ds_name)
return {
status: msg,
dataset_info: update_dataset_info()
}
# Connect event handlers
file_input.change(
load_file,
inputs=[file_input],
outputs=[current_text, next_text, progress, status, dataset_info]
)
next_btn.click(
next_sentence,
outputs=[current_text, next_text, progress, status, dataset_info]
)
prev_btn.click(
prev_sentence,
outputs=[current_text, next_text, progress, status, dataset_info]
)
save_btn.click(
save_recording,
inputs=[audio_recorder, speaker_id, dataset_name],
outputs=[status, dataset_info]
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch()