Spaces:
Sleeping
Sleeping
import os | |
from collections import defaultdict | |
import numpy as np | |
import pandas as pd | |
# このファイルのあるディレクトリの絶対パスを取得し、そこから level ディレクトリへの絶対パスを作成 | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
LEVEL_DIR = os.path.abspath(os.path.join(CURRENT_DIR, "..", "..", "level")) | |
def change_level(df, level="Type1_Level1", sulcus=True): | |
""" | |
Change the level of the given DataFrame based on specified ROI levels. | |
Parameters: | |
df (pd.DataFrame): The input DataFrame to be modified. | |
level (str): The level to which the DataFrame should be changed. Default is "Type1_Level1". | |
sulcus (bool): A flag indicating whether to include sulcus regions. Default is True. | |
Returns: | |
pd.DataFrame: The modified DataFrame with the specified level changes applied. | |
""" | |
# LEVEL_DIR を基準に CSV ファイルの絶対パスを作成 | |
ROI_number = pd.read_csv(os.path.join(LEVEL_DIR, "Level_ROI_No.csv")) | |
ROI_name = pd.read_csv(os.path.join(LEVEL_DIR, "Level_ROI_Name.csv")) | |
if sulcus == False: | |
tmp = ROI_number["Type1_Level2"] | |
ROI_number = ROI_number[tmp != 18] | |
ROI_number = ROI_number[tmp != 19] | |
ROI_name = ROI_name[tmp != 18] | |
ROI_name = ROI_name[tmp != 19] | |
data = dict(zip(ROI_number["ROI"], ROI_number[level])) | |
level_dict = defaultdict(list) | |
for key, value in data.items(): | |
level_dict[str(value)].append(key) | |
change_df_list = [] | |
for i, (key, value) in enumerate(level_dict.items()): | |
name = ROI_name[level].unique()[i] | |
change_df_list.append(df[value].sum(axis=1).rename(name)) | |
change_df = pd.concat(change_df_list, axis=1) | |
return change_df | |
def make_csv(parcellation, output_dir, basename): | |
""" | |
Generates multiple CSV files containing volume data for different levels of parcellation. | |
Parameters: | |
parcellation (numpy.ndarray): The parcellation data array where each unique integer represents a different region. | |
output_dir (str): The directory where the output CSV files will be saved. | |
basename (str): The base name for the output CSV files. | |
Returns: | |
pandas.DataFrame: The DataFrame containing volume data for Type1_Level5. | |
""" | |
# LEVEL_DIR を基準にテキストファイルの絶対パスを作成 | |
csv_path = os.path.join(LEVEL_DIR, "Level5.txt") | |
df_Type1_level5 = ( | |
pd.read_table(csv_path, names=["number", "region"]).astype("str").set_index("number") | |
) | |
for i in range(1, 281): | |
volume = np.count_nonzero(parcellation == i) | |
df_Type1_level5.loc[str(i), basename] = volume | |
df_Type1_level5 = df_Type1_level5.set_index("region").T.reset_index(drop=True) | |
df_Type1_level4 = change_level(df_Type1_level5, level="Type1_Level4") | |
df_Type1_level3 = change_level(df_Type1_level5, level="Type1_Level3") | |
df_Type1_level2 = change_level(df_Type1_level5, level="Type1_Level2") | |
df_Type1_level1 = change_level(df_Type1_level5, level="Type1_Level1") | |
df_Type2_level5 = change_level(df_Type1_level5, level="Type2_Level5") | |
df_Type2_level4 = change_level(df_Type1_level5, level="Type2_Level4") | |
df_Type2_level3 = change_level(df_Type1_level5, level="Type2_Level3") | |
df_Type2_level2 = change_level(df_Type1_level5, level="Type2_Level2") | |
df_Type2_level1 = change_level(df_Type1_level5, level="Type2_Level1") | |
os.makedirs(os.path.join(output_dir, "csv"), exist_ok=True) | |
df_Type1_level5.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type1_Level5.csv"), index=False | |
) | |
df_Type1_level4.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type1_Level4.csv"), index=False | |
) | |
df_Type1_level3.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type1_Level3.csv"), index=False | |
) | |
df_Type1_level2.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type1_Level2.csv"), index=False | |
) | |
df_Type1_level1.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type1_Level1.csv"), index=False | |
) | |
df_Type2_level5.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type2_Level5.csv"), index=False | |
) | |
df_Type2_level4.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type2_Level4.csv"), index=False | |
) | |
df_Type2_level3.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type2_Level3.csv"), index=False | |
) | |
df_Type2_level2.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type2_Level2.csv"), index=False | |
) | |
df_Type2_level1.to_csv( | |
os.path.join(output_dir, f"csv/{basename}_Type2_Level1.csv"), index=False | |
) | |
return df_Type1_level5 | |