File size: 3,141 Bytes
01f75cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from typing import List

import torch
import torch.nn as nn


class ConvBlock(nn.Module):
    def __init__(self, ch_in, ch_out):
        super(ConvBlock, self).__init__()
        self.conv1 = nn.Conv2d(
            ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.conv2 = nn.Conv2d(
            ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=False
        )
        nn.init.normal_(self.conv1.weight, mean=0.0, std=0.02)
        nn.init.normal_(self.conv2.weight, mean=0.0, std=0.02)
        self.batchnorm1 = nn.BatchNorm2d(ch_out)
        self.batchnorm2 = nn.BatchNorm2d(ch_out)
        self.relu = nn.ReLU()

    def forward(self, x):
        h = self.relu(self.batchnorm1(self.conv1(x)))
        h = self.relu(self.batchnorm2(self.conv2(h)))
        return h


class EncodeBlock(nn.Module):
    def __init__(self, ch_in, ch_out):
        super(EncodeBlock, self).__init__()
        self.conv = ConvBlock(ch_in, ch_out)
        self.pool = nn.MaxPool2d((2, 2))

    def forward(self, x):
        skip = self.conv(x)
        h = self.pool(skip)
        return h, skip


class DecodeBlock(nn.Module):
    def __init__(self, ch_in, ch_out):
        super(DecodeBlock, self).__init__()
        self.up = nn.ConvTranspose2d(
            ch_in, ch_out, kernel_size=2, stride=2, padding=0, bias=True
        )
        self.conv = ConvBlock(ch_out * 2, ch_out)

    def forward(self, x, skip):
        h = self.up(x)
        h = self.conv(torch.cat([h, skip], dim=1))
        return h


class UNet(nn.Module):
    def __init__(self, ch_in, ch_out):
        super(UNet, self).__init__()
        self.econv0 = nn.Conv2d(
            ch_in, 64, kernel_size=1, stride=1, padding=0, bias=True
        )
        nn.init.normal_(self.econv0.weight, mean=0.0, std=0.02)

        self.econv1 = self.make_downblock(64, 64)
        self.econv2 = self.make_downblock(64, 128)
        self.econv3 = self.make_downblock(128, 256)
        self.econv4 = self.make_downblock(256, 512)
        self.bottle = self.make_bottleblock(512, 1024)
        self.dconv4 = self.make_upblock(1024, 512)
        self.dconv3 = self.make_upblock(512, 256)
        self.dconv2 = self.make_upblock(256, 128)
        self.dconv1 = self.make_upblock(128, 64)

        self.dconv0 = nn.Conv2d(
            64, ch_out, kernel_size=1, stride=1, padding=0, bias=True
        )
        nn.init.normal_(self.dconv0.weight, mean=0.0, std=0.02)

    def make_downblock(self, ch_in, ch_out):
        return EncodeBlock(ch_in=ch_in, ch_out=ch_out)

    def make_bottleblock(self, ch_in, ch_out):
        return ConvBlock(ch_in=ch_in, ch_out=ch_out)

    def make_upblock(self, ch_in, ch_out):
        return DecodeBlock(ch_in=ch_in, ch_out=ch_out)

    def forward(self, x):
        x = self.econv0(x)
        x, skip1 = self.econv1(x)
        x, skip2 = self.econv2(x)
        x, skip3 = self.econv3(x)
        x, skip4 = self.econv4(x)
        x = self.bottle(x)
        x = self.dconv4(x, skip4)
        x = self.dconv3(x, skip3)
        x = self.dconv2(x, skip2)
        x = self.dconv1(x, skip1)
        x = self.dconv0(x)
        return x