Spaces:
Runtime error
Runtime error
File size: 8,334 Bytes
449c21f 2833827 87a9292 449c21f 43402b6 449c21f f8c9b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import pandas as pd
import numpy as np
import requests
from bs4 import BeautifulSoup
import tensorflow as tf
import gradio as gr
class AnimeRecommender:
def __init__(self, rating_path, anime_path, synopsis_path, model_path):
self.rating_df = pd.read_csv(rating_path)
self.df_anime = pd.read_csv(anime_path, low_memory=True)
self.sypnopsis_df = pd.read_csv(synopsis_path, usecols=["MAL_ID", "Name", "Genres", "sypnopsis"])
self.model = tf.keras.models.load_model(model_path)
self._preprocess_data()
def _preprocess_data(self):
# User and anime ID encoding
user_ids = self.rating_df["user_id"].unique().tolist()
user2user_encoded = {x: i for i, x in enumerate(user_ids)}
anime_ids = self.rating_df["anime_id"].unique().tolist()
anime2anime_encoded = {x: i for i, x in enumerate(anime_ids)}
self.rating_df["user"] = self.rating_df["user_id"].map(user2user_encoded)
self.rating_df["anime"] = self.rating_df["anime_id"].map(anime2anime_encoded)
self.n_users = len(user2user_encoded)
self.n_animes = len(anime2anime_encoded)
self.anime2anime_encoded = anime2anime_encoded
self.anime_encoded2anime = {i: x for i, x in enumerate(anime_ids)}
# Normalize anime weights
self.anime_weights = self._extract_weights('anime_embedding')
# Fix anime names
self.df_anime['anime_id'] = self.df_anime['MAL_ID']
self.df_anime["eng_version"] = self.df_anime['English name']
self.df_anime['eng_version'] = self.df_anime.anime_id.apply(self._get_anime_name)
self.df_anime.sort_values(by=['Score'], inplace=True, ascending=False, kind='quicksort', na_position='last')
self.df_anime = self.df_anime[["anime_id", "eng_version", "Score", "Genres", "Episodes", "Type", "Premiered", "Members"]]
def _extract_weights(self, name):
weight_layer = self.model.get_layer(name)
weights = weight_layer.get_weights()[0]
weights = weights / np.linalg.norm(weights, axis=1).reshape((-1, 1))
return weights
def _get_anime_name(self, anime_id):
try:
name = self.df_anime[self.df_anime.anime_id == anime_id].eng_version.values[0]
if name is np.nan:
name = self.df_anime[self.df_anime.anime_id == anime_id].Name.values[0]
except:
name = 'Unknown'
return name
def get_anime_frame(self, anime):
if isinstance(anime, int):
return self.df_anime[self.df_anime.anime_id == anime]
if isinstance(anime, str):
return self.df_anime[self.df_anime.eng_version == anime]
def get_sypnopsis(self, anime):
if isinstance(anime, int):
return self.sypnopsis_df[self.sypnopsis_df.MAL_ID == anime].sypnopsis.values[0]
if isinstance(anime, str):
return self.sypnopsis_df[self.sypnopsis_df.Name == anime].sypnopsis.values[0]
def find_similar_animes_combined(self, anime_names, n=3, return_dist=False, neg=False):
try:
encoded_indices = []
input_anime_ids = []
for name in anime_names:
index = self.get_anime_frame(name).anime_id.values[0]
input_anime_ids.append(index)
encoded_index = self.anime2anime_encoded.get(index)
encoded_indices.append(encoded_index)
combined_weights = np.mean(self.anime_weights[encoded_indices], axis=0)
combined_weights = combined_weights / np.linalg.norm(combined_weights)
dists = np.dot(self.anime_weights, combined_weights)
sorted_dists = np.argsort(dists)
n = n + len(input_anime_ids)
if neg:
closest = sorted_dists[:n]
else:
closest = sorted_dists[-n:]
if return_dist:
return dists, closest
rindex = self.df_anime
SimilarityArr = []
for close in closest:
decoded_id = self.anime_encoded2anime.get(close)
if decoded_id in input_anime_ids:
continue
sypnopsis = self.get_sypnopsis(decoded_id)
anime_frame = self.get_anime_frame(decoded_id)
anime_name = anime_frame.eng_version.values[0]
genre = anime_frame.Genres.values[0]
similarity = dists[close]
SimilarityArr.append({"anime_id": decoded_id, "name": anime_name, "similarity": similarity, "genre": genre, 'sypnopsis': sypnopsis})
Frame = pd.DataFrame(SimilarityArr).sort_values(by="similarity", ascending=False)
return Frame.drop(index=0)
except Exception as e:
print('{}!, Not Found in Anime list'.format(anime_names))
print(str(e))
return pd.DataFrame()
def get_anime_url(self, name):
anime = self.df_anime[self.df_anime['eng_version'] == name]
if not anime.empty:
mal_id = anime['anime_id'].values[0]
anime_name = anime['eng_version'].values[0].replace(' ', '_').replace(':', '_').replace('!', '_')
return f"https://myanimelist.net/anime/{mal_id}/{anime_name}"
else:
print(f"{name}์ ํด๋นํ๋ ์ ๋๋ฉ์ด์
์ ์ฐพ์ ์ ์์ต๋๋ค.")
return None
def extract_image_url(self, url):
try:
response = requests.get(url)
response.raise_for_status()
except requests.RequestException as e:
print(f"ํ์ด์ง๋ฅผ ๊ฐ์ ธ์ฌ ์ ์์ต๋๋ค: {e}")
return None
soup = BeautifulSoup(response.text, 'html.parser')
image_tag = soup.find('img', {'data-src': True})
if image_tag:
return image_tag['data-src']
else:
print("์ด๋ฏธ์ง๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.")
return None
def NCF_Recommendation(self, a, b, c):
anime_list = [a, b, c]
anime_result = self.find_similar_animes_combined(anime_list, n=3)
result1 = anime_result.loc[3, 'name']
result2 = anime_result.loc[2, 'name']
result3 = anime_result.loc[1, 'name']
explain1 = anime_result.loc[3, 'sypnopsis']
explain2 = anime_result.loc[2, 'sypnopsis']
explain3 = anime_result.loc[1, 'sypnopsis']
url1 = self.get_anime_url(result1)
url2 = self.get_anime_url(result2)
url3 = self.get_anime_url(result3)
image1 = self.extract_image_url(url1)
image2 = self.extract_image_url(url2)
image3 = self.extract_image_url(url3)
return result1, explain1, image1, result2, explain2, image2, result3, explain3, image3
# ํ์ผ ๊ฒฝ๋ก ์ค์
rating_path = 'data/rating_complete.csv'
anime_path = 'data/anime.csv'
synopsis_path = 'data/anime_with_synopsis.csv'
model_path = 'data/anime_model.h5'
# ๊ฐ์ฒด ์์ฑ
recommender = AnimeRecommender(rating_path, anime_path, synopsis_path, model_path)
with gr.Blocks() as app:
with gr.Row():
a = gr.Textbox(label="๋์ ์ต์ ์ ๋ ์ฒซ ๋ฒ์งธ๋ฅผ ์์ฑํด๋ด!")
b = gr.Textbox(label="๋์ ์ต์ ์ ๋ ๋ ๋ฒ์งธ๋ฅผ ์์ฑํด๋ด!")
c = gr.Textbox(label="๋์ ์ต์ ์ ๋ ์ธ ๋ฒ์งธ๋ฅผ ์์ฑํด๋ด!")
with gr.Row():
with gr.Column():
img1 = gr.Image(label="1๋ฒ์งธ ์ ๋ ์ถ์ฒ")
output1 = gr.Textbox(label="1๏ธโฃ ์ฒซ๋ฒ์งธ ์ ๋ ์ถ์ฒ!")
output2 = gr.Textbox(label="์ฒซ ๋ฒ์งธ ์ ๋ ์ค๋ช
", interactive=False)
with gr.Column():
img2 = gr.Image(label="2๋ฒ์งธ ์ ๋ ์ถ์ฒ")
output3 = gr.Textbox(label="2๏ธโฃ ๋๋ฒ์งธ ์ ๋ ์ถ์ฒ!")
output4 = gr.Textbox(label="๋ ๋ฒ์งธ ์ ๋ ์ค๋ช
", interactive=False)
with gr.Column():
img3 = gr.Image(label="3๋ฒ์งธ ์ ๋ ์ถ์ฒ")
output5 = gr.Textbox(label="3๏ธโฃ ์ธ๋ฒ์งธ ์ ๋ ์ถ์ฒ!")
output6 = gr.Textbox(label="์ธ ๋ฒ์งธ ์ ๋ ์ค๋ช
", interactive=False)
btn = gr.Button("์ถ์ฒ์ ๋ฐ์๋ด
์๋ค!")
btn.click(
fn=recommender.NCF_Recommendation,
inputs=[a, b, c],
outputs=[output1, output2, img1, output3, output4, img2, output5, output6, img3]
)
app.launch(share = True)
|