File size: 23,470 Bytes
a655b89 645af7f 0a0a050 108d17d 645af7f a655b89 2ab842f a655b89 2ab842f a655b89 b923a7c a655b89 82f0069 645af7f a655b89 82f0069 645af7f a655b89 82f0069 645af7f a655b89 21f0d84 82f0069 645af7f 21f0d84 a655b89 82f0069 645af7f a655b89 82f0069 645af7f a655b89 82f0069 a655b89 645af7f a655b89 82f0069 645af7f a655b89 82f0069 645af7f a655b89 2ab842f a655b89 b1b6396 645af7f a655b89 0a0a050 a655b89 108d17d a655b89 b1b6396 645af7f a655b89 0a0a050 b923a7c 108d17d 0a0a050 b923a7c b1b6396 645af7f b923a7c 0a0a050 b923a7c 0a0a050 b923a7c 21f0d84 108d17d 21f0d84 b1b6396 645af7f 21f0d84 645af7f 582b9a7 645af7f 582b9a7 645af7f 582b9a7 645af7f 582b9a7 645af7f 582b9a7 645af7f 582b9a7 645af7f 582b9a7 645af7f 582b9a7 645af7f 582b9a7 645af7f 21f0d84 645af7f 21f0d84 a655b89 82f0069 a655b89 cbbdf68 a655b89 b1b6396 a655b89 108d17d 0a0a050 a655b89 82f0069 a655b89 cbbdf68 0a0a050 b1b6396 a655b89 0a0a050 b923a7c 5ca3b99 cbbdf68 21f0d84 b1b6396 21f0d84 645af7f 582b9a7 645af7f 582b9a7 645af7f 0a0a050 b923a7c 108d17d 4fe48d6 108d17d 4fe48d6 645af7f 4fe48d6 645af7f 0a0a050 b923a7c a655b89 645af7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# File: main/app.py
# Purpose: One Space that offers five tools/tabs:
# 1) Fetch — extract relevant page content (title, metadata, clean text, hyperlinks)
# 2) DDG (Concise) — ultra-succinct DuckDuckGo search that emits JSONL with short keys to minimize tokens
# 3) Websearch — structured DuckDuckGo search via LangChain tool (JSON)
# 4) Unstructured DDG — raw DuckDuckGo list[dict] rendered into a Textbox
# 5) Generate Sitemap — LIMITED: grouped internal/external links with an optional per-domain cap (and a .md download)
from __future__ import annotations
import re
import json
from typing import List, Dict, Literal, Tuple
import gradio as gr
import requests
from bs4 import BeautifulSoup
from readability import Document
from urllib.parse import urljoin, urldefrag, urlparse
from langchain_community.tools import DuckDuckGoSearchResults
from duckduckgo_search import DDGS
# ==============================
# Fetch: HTTP + extraction utils
# ==============================
def _http_get(url: str) -> requests.Response:
"""
Download the page politely with a short timeout and realistic headers.
(Layman's terms: grab the web page like a normal browser would, but quickly.)
"""
headers = {
"User-Agent": "Mozilla/5.0 (compatible; WebMCP/1.0; +https://example.com)",
"Accept-Language": "en-US,en;q=0.9",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
}
return requests.get(url, headers=headers, timeout=15)
def _normalize_whitespace(text: str) -> str:
"""
Squeeze extra spaces and blank lines to keep things compact.
(Layman's terms: tidy up the text so it’s not full of weird spacing.)
"""
text = re.sub(r"[ \t\u00A0]+", " ", text)
text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
return text.strip()
def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
"""
Cut text if it gets too long; return the text and whether we trimmed.
(Layman's terms: shorten long text and tell us if we had to cut it.)
"""
if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
return text, False
return text[:max_chars].rstrip() + " …", True
def _shorten(text: str, limit: int) -> str:
"""
Hard cap a string with an ellipsis to keep tokens small.
(Layman's terms: force a string to a max length with an ellipsis.)
"""
if limit <= 0 or len(text) <= limit:
return text
return text[: max(0, limit - 1)].rstrip() + "…"
def _domain_of(url: str) -> str:
"""
Show a friendly site name like "example.com".
(Layman's terms: pull the website's domain.)
"""
try:
return urlparse(url).netloc or ""
except Exception:
return ""
def _meta(soup: BeautifulSoup, name: str) -> str | None:
tag = soup.find("meta", attrs={"name": name})
return tag.get("content") if tag and tag.has_attr("content") else None
def _og(soup: BeautifulSoup, prop: str) -> str | None:
tag = soup.find("meta", attrs={"property": prop})
return tag.get("content") if tag and tag.has_attr("content") else None
def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
"""
Pull the useful bits: title, description, site name, canonical URL, language, etc.
(Layman's terms: gather page basics like title/description/address.)
"""
meta: Dict[str, str] = {}
# Title preference: <title> > og:title > twitter:title
title_candidates = [
(soup.title.string if soup.title and soup.title.string else None),
_og(soup, "og:title"),
_meta(soup, "twitter:title"),
]
meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")
# Description preference: description > og:description > twitter:description
desc_candidates = [
_meta(soup, "description"),
_og(soup, "og:description"),
_meta(soup, "twitter:description"),
]
meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")
# Canonical link (helps dedupe)
link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""
# Site name + language info if present
meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
html_tag = soup.find("html")
meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""
# Final URL + domain
meta["fetched_url"] = final_url
meta["domain"] = _domain_of(final_url)
return meta
def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
"""
Use Readability to isolate the main article and turn it into clean text.
Returns (clean_text, soup_of_readable_html).
(Layman's terms: find the real article text and clean it.)
"""
# Simplified article HTML from Readability
doc = Document(html)
readable_html = doc.summary(html_partial=True)
# Parse simplified HTML
s = BeautifulSoup(readable_html, "lxml")
# Remove noisy tags
for sel in ["script", "style", "noscript", "iframe", "svg"]:
for tag in s.select(sel):
tag.decompose()
# Keep paragraphs, list items, and subheadings for structure without bloat
text_parts: List[str] = []
for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
chunk = p.get_text(" ", strip=True)
if chunk:
text_parts.append(chunk)
clean_text = _normalize_whitespace("\n\n".join(text_parts))
return clean_text, s
def _extract_links(readable_soup: BeautifulSoup, base_url: str, max_links: int) -> List[Tuple[str, str]]:
"""
Collect clean, unique, absolute links from the readable section only.
(Layman's terms: pull a tidy list of links from the article body.)
"""
seen = set()
links: List[Tuple[str, str]] = []
for a in readable_soup.find_all("a", href=True):
href = a.get("href").strip()
# Skip junk links we can't use
if not href or href.startswith("#") or href.startswith("mailto:") or href.startswith("javascript:"):
continue
# Resolve relative URLs, strip fragments (#…)
absolute = urljoin(base_url, href)
absolute, _ = urldefrag(absolute)
if absolute in seen:
continue
seen.add(absolute)
text = a.get_text(" ", strip=True)
if len(text) > 120:
text = text[:117] + "…"
links.append((text or absolute, absolute))
if len(links) >= max_links > 0:
break
return links
def _format_markdown(
meta: Dict[str, str],
body: str,
body_truncated: bool,
links: List[Tuple[str, str]],
include_text: bool,
include_metadata: bool,
include_links: bool,
verbosity: str,
) -> str:
"""
Assemble a compact Markdown summary with optional sections.
(Layman's terms: build the final markdown output with options.)
"""
lines: List[str] = []
# Title header
title = meta.get("title") or meta.get("domain") or "Untitled"
lines.append(f"# {title}")
# Metadata section (only show what exists)
if include_metadata:
md: List[str] = []
if meta.get("description"):
md.append(f"- **Description:** {meta['description']}")
if meta.get("site_name"):
md.append(f"- **Site:** {meta['site_name']}")
if meta.get("canonical"):
md.append(f"- **Canonical:** {meta['canonical']}")
if meta.get("lang"):
md.append(f"- **Language:** {meta['lang']}")
if meta.get("fetched_url"):
md.append(f"- **Fetched From:** {meta['fetched_url']}")
if md:
lines.append("## Metadata")
lines.extend(md)
# Body text
if include_text and body:
if verbosity == "Brief":
brief, was_more = _truncate(body, 800)
lines.append("## Text")
lines.append(brief)
if was_more or body_truncated:
lines.append("\n> (Trimmed for brevity)")
else:
lines.append("## Text")
lines.append(body)
if body_truncated:
lines.append("\n> (Trimmed for brevity)")
# Links section
if include_links and links:
lines.append(f"## Links ({len(links)})")
for text, url in links:
lines.append(f"- [{text}]({url})")
return "\n\n".join(lines).strip()
def Fetch_Webpage( # <-- MCP tool #1 (Fetch)
url: str,
verbosity: str = "Standard",
include_metadata: bool = True,
include_text: bool = True,
include_links: bool = True,
max_chars: int = 3000,
max_links: int = 20,
) -> str:
"""
Fetch a web page and return a compact Markdown summary that includes title, key
metadata, readable main text, and outbound links.
(Layman's terms: summarize a page with clean text + useful details.)
"""
if not url or not url.strip():
return "Please enter a valid URL."
try:
resp = _http_get(url)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
return f"An error occurred: {e}"
final_url = str(resp.url)
ctype = resp.headers.get("Content-Type", "")
if "html" not in ctype.lower():
return f"Unsupported content type for extraction: {ctype or 'unknown'}"
# Decode to text
resp.encoding = resp.encoding or resp.apparent_encoding
html = resp.text
# Full-page soup for metadata
full_soup = BeautifulSoup(html, "lxml")
meta = _extract_metadata(full_soup, final_url)
# Readable content
body_text, readable_soup = _extract_main_text(html)
if not body_text:
# Fallback to "whole-page text" if Readability found nothing
fallback_text = full_soup.get_text(" ", strip=True)
body_text = _normalize_whitespace(fallback_text)
# Verbosity presets (we keep the smaller of preset vs. user cap)
preset_caps = {"Brief": 1200, "Standard": 3000, "Full": 999_999}
target_cap = preset_caps.get(verbosity, 3000)
cap = min(max_chars if max_chars > 0 else target_cap, target_cap)
body_text, truncated = _truncate(body_text, cap) if include_text else ("", False)
# Extract links from the simplified content only
links = _extract_links(readable_soup, final_url, max_links=max_links if include_links else 0)
# Final compact Markdown
md = _format_markdown(
meta=meta,
body=body_text,
body_truncated=truncated,
links=links,
include_text=include_text,
include_metadata=include_metadata,
include_links=include_links,
verbosity=verbosity,
)
return md or "No content could be extracted."
# ==========================
# Websearch: DuckDuckGo tool
# ==========================
def Search_Structured( # <-- MCP tool #3 (Structured DDG)
input_query: str,
max_results: int = 5,
) -> List[Dict[Literal["snippet", "title", "link"], str]]:
"""
Run a DuckDuckGo search and return structured results as a list of dictionaries.
(Layman's terms: search DDG and get clean JSON objects.)
"""
if not input_query or not input_query.strip():
return []
# Create the search tool (LangChain community wrapper)
search = DuckDuckGoSearchResults(output_format="list", num_results=max_results)
# Run the search and return results as a list of dicts
results = search.invoke(input_query)
return results
# ========================================
# Unstructured DDG: raw list into Textbox
# ========================================
def Search_Raw( # <-- MCP tool #4 (Unstructured DDG)
query: str,
) -> list[dict]:
"""
Run a DuckDuckGo search using the native `duckduckgo_search` client and return the
raw Python list of dictionaries from the library.
(Layman's terms: search DDG and show exactly what the library returns.)
"""
if not query or not query.strip():
return []
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
# ============================================
# Concise DDG: ultra-succinct JSONL for tokens
# ============================================
def Search_Concise( # <-- MCP tool #2 (Concise DDG)
query: str,
max_results: int = 5,
include_snippets: bool = False,
max_snippet_chars: int = 80,
dedupe_domains: bool = True,
title_chars: int = 80,
) -> str:
"""
Run a DuckDuckGo search and return ultra-compact JSONL lines with short keys to
minimize tokens.
(Layman's terms: the tiniest useful search output possible.)
"""
if not query or not query.strip():
return ""
try:
with DDGS() as ddgs:
raw = ddgs.text(query, max_results=max_results)
except Exception as e:
return json.dumps({"error": str(e)[:120]}, ensure_ascii=False, separators=(",", ":"))
seen_domains = set()
lines: List[str] = []
for r in raw or []:
title = _shorten((r.get("title") or "").strip(), title_chars)
url = (r.get("href") or r.get("link") or "").strip()
body = (r.get("body") or r.get("snippet") or "").strip()
if not url:
continue
if dedupe_domains:
dom = _domain_of(url)
if dom in seen_domains:
continue
seen_domains.add(dom)
obj = {"t": title or _domain_of(url), "u": url}
if include_snippets and body:
obj["s"] = _shorten(body, max_snippet_chars)
# Emit most compact JSON possible (no spaces)
lines.append(json.dumps(obj, ensure_ascii=False, separators=(",", ":")))
# Join as JSONL (each result on its own line)
return "\n".join(lines)
# ============================================
# Generate Sitemap (new MCP tool #5)
# ============================================
def Generate_Sitemap(
url: str,
max_links_per_domain: int = 0,
) -> str:
"""
Generate a grouped sitemap (Markdown) of anchor links on a page, with an optional
per-domain cap.
Args:
url (str): The starting page URL (http/https). If the scheme is omitted,
https is assumed.
max_links_per_domain (int): Limit the number of links shown per domain.
Use 0 to show all links.
Returns:
str: Markdown text containing grouped links under "Internal Links" and
per-domain "External Links (domain)" sections. If an error occurs or no
links are found, a short message is returned.
"""
# --- Basic validation & normalization ---
if not url or not url.strip():
return "Please enter a valid URL."
# If the user forgot the scheme, assume https
if not url.lower().startswith(("http://", "https://")):
url = "https://" + url.strip()
# --- Fetch the page safely ---
try:
resp = _http_get(url)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
return f"Error fetching URL: {str(e)}"
base_url = str(resp.url) # follow redirects and use the final URL
content_type = resp.headers.get("Content-Type", "")
if "html" not in content_type.lower():
return "The provided URL does not appear to be an HTML page."
# --- Parse and collect links ---
soup = BeautifulSoup(resp.content, "lxml") # fast, lenient HTML parsing
anchors = soup.find_all("a", href=True)
seen_urls: set[str] = set()
items: List[Dict[str, str]] = []
for a in anchors:
href = (a.get("href") or "").strip()
if not href:
continue
# Skip non-navigational/unsupported schemes
if href.startswith(("#", "javascript:", "mailto:", "tel:")):
continue
# Resolve relative links and strip fragments
absolute = urljoin(base_url, href)
absolute, _ = urldefrag(absolute)
# Deduplicate and skip self
if absolute in seen_urls or absolute == base_url:
continue
seen_urls.add(absolute)
# Use link text if available; otherwise the URL itself
text = (a.get_text(" ", strip=True) or href).strip()
if len(text) > 100:
text = text[:100] + "..."
items.append({"text": text, "url": absolute})
if not items:
return "No links found on this page."
# --- Group by Internal vs External domains ---
base_netloc = urlparse(base_url).netloc
domain_groups: Dict[str, List[Dict[str, str]]] = {}
for it in items:
netloc = urlparse(it["url"]).netloc
key = "Internal Links" if netloc == base_netloc else f"External Links ({netloc})"
domain_groups.setdefault(key, []).append(it)
# --- Build Markdown with optional per-domain limit ---
total_links = len(items)
md_lines: List[str] = []
md_lines.append("# Sitemap")
md_lines.append(f"Base URL: {base_url}")
md_lines.append(f"Found {total_links} links:\n")
# Show Internal first, then external groups sorted by name
keys_sorted = ["Internal Links"] + sorted([k for k in domain_groups if k != "Internal Links"])
for group_key in keys_sorted:
if group_key not in domain_groups:
continue
group_links = domain_groups[group_key]
md_lines.append(f"## {group_key}\n")
if max_links_per_domain and max_links_per_domain > 0:
links_to_show = group_links[:max_links_per_domain]
remaining = max(0, len(group_links) - max_links_per_domain)
else:
links_to_show = group_links
remaining = 0
for link in links_to_show:
md_lines.append(f"- [{link['text']}]({link['url']})")
if remaining > 0:
md_lines.append(f"- ... and {remaining} more links")
md_lines.append("") # blank line after each group
sitemap_md = "\n".join(md_lines).strip()
return sitemap_md
# ======================
# UI: five-tab interface
# ======================
# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
fn=Fetch_Webpage, # connect the function to the UI
inputs=[
gr.Textbox(label="URL", placeholder="https://example.com/article"),
gr.Dropdown(label="Verbosity", choices=["Brief", "Standard", "Full"], value="Standard"),
gr.Checkbox(value=True, label="Include Metadata"),
gr.Checkbox(value=True, label="Include Main Text"),
gr.Checkbox(value=True, label="Include Links"),
gr.Slider(400, 12000, value=3000, step=100, label="Max Characters (body text)"),
gr.Slider(0, 100, value=20, step=1, label="Max Links"),
],
outputs=gr.Markdown(label="Extracted Summary"),
title="Fetch Webpage",
description="Extract title, key metadata, readable text, and links. No noisy HTML.",
api_description=(
"Fetch a web page and return a compact Markdown summary with title, key "
"metadata, readable body text, and outbound links. Parameters let you "
"control verbosity, whether to include metadata/text/links, and limits "
"for characters and number of links."
),
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
)
# --- Concise DDG tab (JSONL with short keys, minimal tokens) ---
concise_interface = gr.Interface(
fn=Search_Concise,
inputs=[
gr.Textbox(label="Query", placeholder="topic OR site:example.com"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
gr.Checkbox(value=False, label="Include snippets (adds tokens)"),
gr.Slider(minimum=20, maximum=200, value=80, step=5, label="Max snippet chars"),
gr.Checkbox(value=True, label="Dedupe by domain"),
gr.Slider(minimum=20, maximum=120, value=80, step=5, label="Max title chars"),
],
outputs=gr.Textbox(label="Results (JSONL)", interactive=False),
title="DuckDuckGo Search (Concise)",
description="Emits JSONL with short keys (t,u[,s]). Defaults avoid snippets and duplicate domains.",
api_description=(
"Run a DuckDuckGo search and return newline-delimited JSON with short keys: "
"t=title, u=url, optional s=snippet. Options control result count, "
"snippet inclusion and length, domain deduping, and title length."
),
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
submit_btn="Search",
)
# --- Websearch tab (structured DDG via LangChain) ---
websearch_interface = gr.Interface(
fn=Search_Structured, # connect the function to the UI
inputs=[
gr.Textbox(value="", label="Search query", placeholder="site:example.com interesting topic"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
],
outputs=gr.JSON(label="Search results"),
title="DuckDuckGo Search (Structured)",
description="Search the web using DuckDuckGo; returns snippet, title, and link.",
api_description=(
"Run a DuckDuckGo web search and return a list of objects with keys: "
"snippet, title, and link. Configure the number of results."
),
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
)
# --- Unstructured DDG tab (matches your separate app’s output) ---
unstructured_interface = gr.Interface(
fn=Search_Raw,
inputs=gr.Textbox(label="Enter Search Query"),
outputs=gr.Textbox(label="Results", interactive=False),
title="DuckDuckGo Search (Raw)",
description="Returns the raw list of results (list[dict]) shown as text.",
api_description=(
"Run DuckDuckGo via the native client and return the raw list[dict] as "
"provided by duckduckgo_search (fields like title, href/link, body/snippet)."
),
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
submit_btn="Search",
)
# --- Generate Sitemap tab (LIMITED, grouped + optional per-domain cap) ---
sitemap_interface = gr.Interface(
fn=Generate_Sitemap,
inputs=[
gr.Textbox(
label="Website URL",
placeholder="https://example.com or example.com"
),
gr.Slider(
minimum=0,
maximum=1000,
value=0,
step=1,
label="Max links per domain (0 = show all)"
),
],
outputs=gr.Markdown(label="Sitemap (Markdown)"),
title="Generate Sitemap",
description="Group links by Internal/External domains; optionally limit links per domain.",
api_description=(
"Scan a page and build a grouped sitemap of anchor links. Links are grouped as "
"Internal or External (per domain). Set a per-domain cap; 0 shows all."
),
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
submit_btn="Generate",
)
# --- Combine all into a single app with tabs ---
demo = gr.TabbedInterface(
interface_list=[fetch_interface, concise_interface, websearch_interface, unstructured_interface, sitemap_interface],
tab_names=[
"Fetch Webpage",
"DuckDuckGo Search (Concise)",
"DuckDuckGo Search (Structured)",
"DuckDuckGo Search (Raw)",
"Generate Sitemap",
],
title="Web MCP — Fetch, Search, and Sitemaps with customizable output modes.",
theme="Nymbo/Nymbo_Theme",
)
# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
demo.launch(mcp_server=True)
|