File size: 16,498 Bytes
a655b89
21f0d84
0a0a050
 
21f0d84
 
a655b89
 
 
2ab842f
 
a655b89
 
2ab842f
 
 
 
 
a655b89
b923a7c
 
a655b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f0d84
 
 
 
 
 
 
 
 
a655b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab842f
a655b89
 
 
 
 
 
 
 
 
2ab842f
a655b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a0a050
 
 
a655b89
2ab842f
a655b89
 
 
 
cbbdf68
a655b89
 
 
 
 
 
 
 
 
 
 
 
0a0a050
 
 
b923a7c
2ab842f
0a0a050
 
b923a7c
cbbdf68
b923a7c
0a0a050
 
b923a7c
0a0a050
 
b923a7c
 
21f0d84
 
 
 
2ab842f
21f0d84
 
 
 
 
 
 
 
cbbdf68
21f0d84
cbbdf68
21f0d84
 
 
 
 
 
cbbdf68
21f0d84
 
 
 
 
 
 
cbbdf68
21f0d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a655b89
 
 
 
 
 
 
 
 
 
 
 
 
 
cbbdf68
a655b89
 
 
 
 
0a0a050
a655b89
 
 
 
 
 
 
cbbdf68
0a0a050
a655b89
 
 
 
0a0a050
b923a7c
cbbdf68
 
 
 
21f0d84
 
 
 
 
 
 
 
cbbdf68
21f0d84
 
 
 
 
 
 
 
cbbdf68
 
21f0d84
b923a7c
a655b89
21f0d84
a655b89
 
0a0a050
b923a7c
21f0d84
 
cbbdf68
0a0a050
b923a7c
 
 
a655b89
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# File: main/app.py
# Purpose: One Space that offers four tools/tabs:
#   1) Fetch — extract relevant page content (title, metadata, clean text, hyperlinks)
#   2) Websearch — structured DuckDuckGo search via LangChain tool (JSON)
#   3) Unstructured DDG — raw DuckDuckGo list[dict] rendered into a Textbox
#   4) DDG (Concise) — ultra-succinct DuckDuckGo search that emits JSONL with short keys to minimize tokens

from __future__ import annotations

import re
import json
from typing import List, Dict, Literal, Tuple

import gradio as gr
import requests
from bs4 import BeautifulSoup
from readability import Document
from urllib.parse import urljoin, urldefrag, urlparse
from langchain_community.tools import DuckDuckGoSearchResults
from duckduckgo_search import DDGS


# ==============================
# Fetch: HTTP + extraction utils
# ==============================

def _http_get(url: str) -> requests.Response:
    """
    (layman) Download the page politely with a short timeout and realistic headers.
    """
    headers = {
        "User-Agent": "Mozilla/5.0 (compatible; WebMCP/1.0; +https://example.com)",
        "Accept-Language": "en-US,en;q=0.9",
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
    }
    return requests.get(url, headers=headers, timeout=15)


def _normalize_whitespace(text: str) -> str:
    """
    (layman) Squeeze extra spaces and blank lines to keep things compact.
    """
    text = re.sub(r"[ \t\u00A0]+", " ", text)
    text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
    return text.strip()


def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
    """
    (layman) Cut text if it gets too long; return the text and whether we trimmed.
    """
    if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
        return text, False
    return text[:max_chars].rstrip() + " …", True


def _shorten(text: str, limit: int) -> str:
    """
    (layman) Hard cap a string with an ellipsis to keep tokens small.
    """
    if limit <= 0 or len(text) <= limit:
        return text
    return text[: max(0, limit - 1)].rstrip() + "…"


def _domain_of(url: str) -> str:
    """
    (layman) Show a friendly site name like "example.com".
    """
    try:
        return urlparse(url).netloc or ""
    except Exception:
        return ""


def _meta(soup: BeautifulSoup, name: str) -> str | None:
    tag = soup.find("meta", attrs={"name": name})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _og(soup: BeautifulSoup, prop: str) -> str | None:
    tag = soup.find("meta", attrs={"property": prop})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
    """
    (layman) Pull the useful bits: title, description, site name, canonical URL, language, etc.
    """
    meta: Dict[str, str] = {}

    # Title preference: <title> > og:title > twitter:title
    title_candidates = [
        (soup.title.string if soup.title and soup.title.string else None),
        _og(soup, "og:title"),
        _meta(soup, "twitter:title"),
    ]
    meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")

    # Description preference: description > og:description > twitter:description
    desc_candidates = [
        _meta(soup, "description"),
        _og(soup, "og:description"),
        _meta(soup, "twitter:description"),
    ]
    meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")

    # Canonical link (helps dedupe)
    link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
    meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""

    # Site name + language info if present
    meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
    html_tag = soup.find("html")
    meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""

    # Final URL + domain
    meta["fetched_url"] = final_url
    meta["domain"] = _domain_of(final_url)

    return meta


def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
    """
    (layman) Use Readability to isolate the main article and turn it into clean text.
    Returns (clean_text, soup_of_readable_html).
    """
    # Simplified article HTML from Readability
    doc = Document(html)
    readable_html = doc.summary(html_partial=True)

    # Parse simplified HTML
    s = BeautifulSoup(readable_html, "lxml")

    # Remove noisy tags
    for sel in ["script", "style", "noscript", "iframe", "svg"]:
        for tag in s.select(sel):
            tag.decompose()

    # Keep paragraphs, list items, and subheadings for structure without bloat
    text_parts: List[str] = []
    for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
        chunk = p.get_text(" ", strip=True)
        if chunk:
            text_parts.append(chunk)

    clean_text = _normalize_whitespace("\n\n".join(text_parts))
    return clean_text, s


def _extract_links(readable_soup: BeautifulSoup, base_url: str, max_links: int) -> List[Tuple[str, str]]:
    """
    (layman) Collect clean, unique, absolute links from the readable section only.
    """
    seen = set()
    links: List[Tuple[str, str]] = []

    for a in readable_soup.find_all("a", href=True):
        href = a.get("href").strip()
        # Skip junk links we can't use
        if not href or href.startswith("#") or href.startswith("mailto:") or href.startswith("javascript:"):
            continue

        # Resolve relative URLs, strip fragments (#…)
        absolute = urljoin(base_url, href)
        absolute, _ = urldefrag(absolute)

        if absolute in seen:
            continue
        seen.add(absolute)

        text = a.get_text(" ", strip=True)
        if len(text) > 120:
            text = text[:117] + "…"

        links.append((text or absolute, absolute))

        if len(links) >= max_links > 0:
            break

    return links


def _format_markdown(
    meta: Dict[str, str],
    body: str,
    body_truncated: bool,
    links: List[Tuple[str, str]],
    include_text: bool,
    include_metadata: bool,
    include_links: bool,
    verbosity: str,
) -> str:
    """
    (layman) Assemble a compact Markdown summary with optional sections.
    """
    lines: List[str] = []

    # Title header
    title = meta.get("title") or meta.get("domain") or "Untitled"
    lines.append(f"# {title}")

    # Metadata section (only show what exists)
    if include_metadata:
        md: List[str] = []
        if meta.get("description"):
            md.append(f"- **Description:** {meta['description']}")
        if meta.get("site_name"):
            md.append(f"- **Site:** {meta['site_name']}")
        if meta.get("canonical"):
            md.append(f"- **Canonical:** {meta['canonical']}")
        if meta.get("lang"):
            md.append(f"- **Language:** {meta['lang']}")
        if meta.get("fetched_url"):
            md.append(f"- **Fetched From:** {meta['fetched_url']}")
        if md:
            lines.append("## Metadata")
            lines.extend(md)

    # Body text
    if include_text and body:
        if verbosity == "Brief":
            brief, was_more = _truncate(body, 800)
            lines.append("## Text")
            lines.append(brief)
            if was_more or body_truncated:
                lines.append("\n> (Trimmed for brevity)")
        else:
            lines.append("## Text")
            lines.append(body)
            if body_truncated:
                lines.append("\n> (Trimmed for brevity)")

    # Links section
    if include_links and links:
        lines.append(f"## Links ({len(links)})")
        for text, url in links:
            lines.append(f"- [{text}]({url})")

    return "\n\n".join(lines).strip()


def Fetch_Webpage(  # <-- MCP tool #1 (Fetch)
    url: str,
    verbosity: str = "Standard",
    include_metadata: bool = True,
    include_text: bool = True,
    include_links: bool = True,
    max_chars: int = 3000,
    max_links: int = 20,
) -> str:
    """
    Given a URL, return a tight Markdown summary: title, key metadata, readable text, and links.
    """
    if not url or not url.strip():
        return "Please enter a valid URL."

    try:
        resp = _http_get(url)
        resp.raise_for_status()
    except requests.exceptions.RequestException as e:
        return f"An error occurred: {e}"

    final_url = str(resp.url)
    ctype = resp.headers.get("Content-Type", "")
    if "html" not in ctype.lower():
        return f"Unsupported content type for extraction: {ctype or 'unknown'}"

    # Decode to text
    resp.encoding = resp.encoding or resp.apparent_encoding
    html = resp.text

    # Full-page soup for metadata
    full_soup = BeautifulSoup(html, "lxml")
    meta = _extract_metadata(full_soup, final_url)

    # Readable content
    body_text, readable_soup = _extract_main_text(html)
    if not body_text:
        # Fallback to "whole-page text" if Readability found nothing
        fallback_text = full_soup.get_text(" ", strip=True)
        body_text = _normalize_whitespace(fallback_text)

    # Verbosity presets (we keep the smaller of preset vs. user cap)
    preset_caps = {"Brief": 1200, "Standard": 3000, "Full": 999_999}
    target_cap = preset_caps.get(verbosity, 3000)
    cap = min(max_chars if max_chars > 0 else target_cap, target_cap)
    body_text, truncated = _truncate(body_text, cap) if include_text else ("", False)

    # Extract links from the simplified content only
    links = _extract_links(readable_soup, final_url, max_links=max_links if include_links else 0)

    # Final compact Markdown
    md = _format_markdown(
        meta=meta,
        body=body_text,
        body_truncated=truncated,
        links=links,
        include_text=include_text,
        include_metadata=include_metadata,
        include_links=include_links,
        verbosity=verbosity,
    )
    return md or "No content could be extracted."


# ==========================
# Websearch: DuckDuckGo tool
# ==========================

def Search_Structured(  # <-- MCP tool #2 (Structured DDG)
    input_query: str,
    max_results: int = 5,
) -> List[Dict[Literal["snippet", "title", "link"], str]]:
    """
    Run a DuckDuckGo search and return a list of {snippet, title, link}.
    """
    if not input_query or not input_query.strip():
        return []

    # Create the search tool (LangChain community wrapper)
    search = DuckDuckGoSearchResults(output_format="list", num_results=max_results)

    # Run the search and return results as a list of dicts
    results = search.invoke(input_query)
    return results


# ========================================
# Unstructured DDG: raw list into Textbox
# ========================================

def Search_Raw(  # <-- MCP tool #3 (Unstructured DDG)
    query: str,
) -> list[dict]:
    """
    Search using Native DDG client. Returns a plain list[dict] — exactly like your separate space.
    """
    if not query or not query.strip():
        return []
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results


# ============================================
# Concise DDG: ultra-succinct JSONL for tokens
# ============================================

def Search_Concise(  # <-- MCP tool #4 (Concise DDG)
    query: str,
    max_results: int = 5,
    include_snippets: bool = False,
    max_snippet_chars: int = 80,
    dedupe_domains: bool = True,
    title_chars: int = 80,
) -> str:
    """
    Minimal-output DuckDuckGo search designed to reduce tokens:
      - Returns newline-delimited JSON (JSONL) with short keys:
            t=title, u=url, s=snippet

    Returns:
      A compact string like:
        {"t":"Example","u":"https://example.com/x"}
        {"t":"Another…","u":"https://a.com/y","s":"Short snippet…"}
    """
    
    if not query or not query.strip():
        return ""

    try:
        with DDGS() as ddgs:
            raw = ddgs.text(query, max_results=max_results)
    except Exception as e:
        
        return json.dumps({"error": str(e)[:120]}, ensure_ascii=False, separators=(",", ":"))

    seen_domains = set()
    lines: List[str] = []

    for r in raw or []:
        title = _shorten((r.get("title") or "").strip(), title_chars)
        url = (r.get("href") or r.get("link") or "").strip()
        body = (r.get("body") or r.get("snippet") or "").strip()

        if not url:
            continue

        if dedupe_domains:
            dom = _domain_of(url)
            if dom in seen_domains:
                continue
            seen_domains.add(dom)

        obj = {"t": title or _domain_of(url), "u": url}

        if include_snippets and body:
            obj["s"] = _shorten(body, max_snippet_chars)

        # Emit most compact JSON possible (no spaces)
        lines.append(json.dumps(obj, ensure_ascii=False, separators=(",", ":")))

    # Join as JSONL (each result on its own line)
    return "\n".join(lines)


# ======================
# UI: four-tab interface
# ======================

# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
    fn=extract_relevant,  # (layman) connect the function to the UI
    inputs=[
        gr.Textbox(label="URL", placeholder="https://example.com/article"),
        gr.Dropdown(label="Verbosity", choices=["Brief", "Standard", "Full"], value="Standard"),
        gr.Checkbox(value=True, label="Include Metadata"),
        gr.Checkbox(value=True, label="Include Main Text"),
        gr.Checkbox(value=True, label="Include Links"),
        gr.Slider(400, 12000, value=3000, step=100, label="Max Characters (body text)"),
        gr.Slider(0, 100, value=20, step=1, label="Max Links"),
    ],
    outputs=gr.Markdown(label="Extracted Summary"),
    title="Fetch Webpage",
    description="Extract title, key metadata, readable text, and links. No noisy HTML.",
    allow_flagging="never",
    theme="Nymbo/Nymbo_Theme",
)

# --- Websearch tab (structured DDG via LangChain) ---
websearch_interface = gr.Interface(
    fn=web_search,  # (layman) connect the function to the UI
    inputs=[
        gr.Textbox(value="", label="Search query", placeholder="site:example.com interesting topic"),
        gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
    ],
    outputs=gr.JSON(label="Search results"),
    title="DuckDuckGo Search (Structured)",
    description="Search the web using DuckDuckGo; returns snippet, title, and link.",
    allow_flagging="never",
    theme="Nymbo/Nymbo_Theme",
)

# --- Unstructured DDG tab (matches your separate app’s output) ---
unstructured_interface = gr.Interface(
    fn=ddg_unstructured,
    inputs=gr.Textbox(label="Enter Search Query"),
    outputs=gr.Textbox(label="Results", interactive=False),
    title="DuckDuckGo Search (Raw)",
    description="Returns the raw list of results (list[dict]) shown as text.",
    allow_flagging="never",
    theme="Nymbo/Nymbo_Theme",
    submit_btn="Search",
)

# --- Concise DDG tab (JSONL with short keys, minimal tokens) ---
concise_interface = gr.Interface(
    fn=ddg_concise,
    inputs=[
        gr.Textbox(label="Query", placeholder="topic OR site:example.com"),
        gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
        gr.Checkbox(value=False, label="Include snippets (adds tokens)"),
        gr.Slider(minimum=20, maximum=200, value=80, step=5, label="Max snippet chars"),
        gr.Checkbox(value=True, label="Dedupe by domain"),
        gr.Slider(minimum=20, maximum=120, value=80, step=5, label="Max title chars"),
    ],
    outputs=gr.Textbox(label="Results (JSONL)", interactive=False),
    title="DuckDuckGo Search (Concise)",
    description="Emits JSONL with short keys (t,u[,s]). Defaults avoid snippets and duplicate domains.",
    allow_flagging="never",
    theme="Nymbo/Nymbo_Theme",
    submit_btn="Search",
)

# --- Combine all into a single app with tabs ---
demo = gr.TabbedInterface(
    interface_list=[fetch_interface, websearch_interface, unstructured_interface, concise_interface],
    tab_names=["Fetch", "Websearch", "Unstructured DDG", "DDG (Concise)"],
    title="Web MCP — Fetch & DuckDuckGo search with customizable output modes.",
    theme="Nymbo/Nymbo_Theme",
)

# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
    demo.launch(mcp_server=True)