File size: 12,748 Bytes
a655b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# File: main/app.py
# Purpose: One Space that offers two tools:
#          1) Fetch: extract relevant page content (title, metadata, clean text, hyperlinks)
#          2) Websearch: DuckDuckGo web search
#
# Notes:
# - Launched with mcp_server=True so both functions are available as MCP tools.
# - UI uses TabbedInterface so you can use each tool from its own tab.
# - Inline comments explain each section in plain language.

from __future__ import annotations

import re                                         # (layman) used to tidy up whitespace
from typing import List, Dict, Literal, Tuple

import gradio as gr                               # (layman) the UI framework
import requests                                   # (layman) to download web pages
from bs4 import BeautifulSoup                     # (layman) for parsing HTML
from readability import Document                  # (layman) to isolate main readable content
from urllib.parse import urljoin, urldefrag, urlparse  # (layman) to fix/clean URLs

# DuckDuckGo via LangChain community tool
from langchain_community.tools import DuckDuckGoSearchResults


# ==============================
# Fetch: HTTP + extraction utils
# ==============================

def _http_get(url: str) -> requests.Response:
    """
    (layman) Download the page politely with a short timeout and realistic headers.
    """
    headers = {
        "User-Agent": "Mozilla/5.0 (compatible; WebMCP/1.0; +https://example.com)",
        "Accept-Language": "en-US,en;q=0.9",
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
    }
    return requests.get(url, headers=headers, timeout=15)


def _normalize_whitespace(text: str) -> str:
    """
    (layman) Squeeze extra spaces and blank lines to keep things compact.
    """
    text = re.sub(r"[ \t\u00A0]+", " ", text)
    text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
    return text.strip()


def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
    """
    (layman) Cut text if it gets too long; return the text and whether we trimmed.
    """
    if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
        return text, False
    return text[:max_chars].rstrip() + " …", True


def _domain_of(url: str) -> str:
    """
    (layman) Show a friendly site name like "example.com".
    """
    try:
        return urlparse(url).netloc or ""
    except Exception:
        return ""


def _meta(soup: BeautifulSoup, name: str) -> str | None:
    tag = soup.find("meta", attrs={"name": name})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _og(soup: BeautifulSoup, prop: str) -> str | None:
    tag = soup.find("meta", attrs={"property": prop})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
    """
    (layman) Pull the useful bits: title, description, site name, canonical URL, language, etc.
    """
    meta: Dict[str, str] = {}

    # Title preference: <title> > og:title > twitter:title
    title_candidates = [
        (soup.title.string if soup.title and soup.title.string else None),
        _og(soup, "og:title"),
        _meta(soup, "twitter:title"),
    ]
    meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")

    # Description preference: description > og:description > twitter:description
    desc_candidates = [
        _meta(soup, "description"),
        _og(soup, "og:description"),
        _meta(soup, "twitter:description"),
    ]
    meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")

    # Canonical link (helps dedupe)
    link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
    meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""

    # Site name + language info if present
    meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
    html_tag = soup.find("html")
    meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""

    # Final URL + domain
    meta["fetched_url"] = final_url
    meta["domain"] = _domain_of(final_url)

    return meta


def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
    """
    (layman) Use Readability to isolate the main article and turn it into clean text.
    Returns (clean_text, soup_of_readable_html).
    """
    # Simplified article HTML from Readability
    doc = Document(html)
    readable_html = doc.summary(html_partial=True)

    # Parse simplified HTML
    s = BeautifulSoup(readable_html, "lxml")

    # Remove noisy tags
    for sel in ["script", "style", "noscript", "iframe", "svg"]:
        for tag in s.select(sel):
            tag.decompose()

    # Keep paragraphs, list items, and subheadings for structure without bloat
    text_parts: List[str] = []
    for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
        chunk = p.get_text(" ", strip=True)
        if chunk:
            text_parts.append(chunk)

    clean_text = _normalize_whitespace("\n\n".join(text_parts))
    return clean_text, s


def _extract_links(readable_soup: BeautifulSoup, base_url: str, max_links: int) -> List[Tuple[str, str]]:
    """
    (layman) Collect clean, unique, absolute links from the readable section only.
    """
    seen = set()
    links: List[Tuple[str, str]] = []

    for a in readable_soup.find_all("a", href=True):
        href = a.get("href").strip()
        # Skip junk links we can't use
        if not href or href.startswith("#") or href.startswith("mailto:") or href.startswith("javascript:"):
            continue

        # Resolve relative URLs, strip fragments (#…)
        absolute = urljoin(base_url, href)
        absolute, _ = urldefrag(absolute)

        if absolute in seen:
            continue
        seen.add(absolute)

        text = a.get_text(" ", strip=True)
        if len(text) > 120:
            text = text[:117] + "…"

        links.append((text or absolute, absolute))

        if len(links) >= max_links > 0:
            break

    return links


def _format_markdown(
    meta: Dict[str, str],
    body: str,
    body_truncated: bool,
    links: List[Tuple[str, str]],
    include_text: bool,
    include_metadata: bool,
    include_links: bool,
    verbosity: str,
) -> str:
    """
    (layman) Assemble a compact Markdown summary with optional sections.
    """
    lines: List[str] = []

    # Title header
    title = meta.get("title") or meta.get("domain") or "Untitled"
    lines.append(f"# {title}")

    # Metadata section (only show what exists)
    if include_metadata:
        md: List[str] = []
        if meta.get("description"):
            md.append(f"- **Description:** {meta['description']}")
        if meta.get("site_name"):
            md.append(f"- **Site:** {meta['site_name']}")
        if meta.get("canonical"):
            md.append(f"- **Canonical:** {meta['canonical']}")
        if meta.get("lang"):
            md.append(f"- **Language:** {meta['lang']}")
        if meta.get("fetched_url"):
            md.append(f"- **Fetched From:** {meta['fetched_url']}")
        if md:
            lines.append("## Metadata")
            lines.extend(md)

    # Body text
    if include_text and body:
        if verbosity == "Brief":
            brief, was_more = _truncate(body, 800)
            lines.append("## Text")
            lines.append(brief)
            if was_more or body_truncated:
                lines.append("\n> (Trimmed for brevity)")
        else:
            lines.append("## Text")
            lines.append(body)
            if body_truncated:
                lines.append("\n> (Trimmed for brevity)")

    # Links section
    if include_links and links:
        lines.append(f"## Links ({len(links)})")
        for text, url in links:
            lines.append(f"- [{text}]({url})")

    return "\n\n".join(lines).strip()


def extract_relevant(  # <-- MCP tool #1
    url: str,
    verbosity: str = "Standard",
    include_metadata: bool = True,
    include_text: bool = True,
    include_links: bool = True,
    max_chars: int = 3000,
    max_links: int = 20,
) -> str:
    """
    (layman) Given a URL, return a tight Markdown summary: title, key metadata, readable text, and links.
    """
    if not url or not url.strip():
        return "Please enter a valid URL."

    try:
        resp = _http_get(url)
        resp.raise_for_status()
    except requests.exceptions.RequestException as e:
        return f"An error occurred: {e}"

    final_url = str(resp.url)
    ctype = resp.headers.get("Content-Type", "")
    if "html" not in ctype.lower():
        return f"Unsupported content type for extraction: {ctype or 'unknown'}"

    # Decode to text
    resp.encoding = resp.encoding or resp.apparent_encoding
    html = resp.text

    # Full-page soup for metadata
    full_soup = BeautifulSoup(html, "lxml")
    meta = _extract_metadata(full_soup, final_url)

    # Readable content
    body_text, readable_soup = _extract_main_text(html)
    if not body_text:
        # Fallback to "whole-page text" if Readability found nothing
        fallback_text = full_soup.get_text(" ", strip=True)
        body_text = _normalize_whitespace(fallback_text)

    # Verbosity presets (we keep the smaller of preset vs. user cap)
    preset_caps = {"Brief": 1200, "Standard": 3000, "Full": 999_999}
    target_cap = preset_caps.get(verbosity, 3000)
    cap = min(max_chars if max_chars > 0 else target_cap, target_cap)
    body_text, truncated = _truncate(body_text, cap) if include_text else ("", False)

    # Extract links from the simplified content only
    links = _extract_links(readable_soup, final_url, max_links=max_links if include_links else 0)

    # Final compact Markdown
    md = _format_markdown(
        meta=meta,
        body=body_text,
        body_truncated=truncated,
        links=links,
        include_text=include_text,
        include_metadata=include_metadata,
        include_links=include_links,
        verbosity=verbosity,
    )
    return md or "No content could be extracted."


# ==========================
# Websearch: DuckDuckGo tool
# ==========================

def web_search(  # <-- MCP tool #2
    input_query: str,
    max_results: int = 5,
) -> List[Dict[Literal["snippet", "title", "link"], str]]:
    """
    (layman) Run a DuckDuckGo search and return a list of {snippet, title, link}.
    """
    if not input_query or not input_query.strip():
        return []

    # Create the search tool (LangChain community wrapper)
    search = DuckDuckGoSearchResults(output_format="list", num_results=max_results)

    # Run the search and return results as a list of dicts
    results = search.invoke(input_query)
    return results


# =====================
# UI: two-tab interface
# =====================

# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
    fn=extract_relevant,  # (layman) connect the function to the UI
    inputs=[
        gr.Textbox(label="URL", placeholder="https://example.com/article"),
        gr.Dropdown(label="Verbosity", choices=["Brief", "Standard", "Full"], value="Standard"),
        gr.Checkbox(value=True, label="Include Metadata"),
        gr.Checkbox(value=True, label="Include Main Text"),
        gr.Checkbox(value=True, label="Include Links"),
        gr.Slider(400, 12000, value=3000, step=100, label="Max Characters (body text)"),
        gr.Slider(0, 100, value=20, step=1, label="Max Links"),
    ],
    outputs=gr.Markdown(label="Extracted Summary"),
    title="Fetch β€” Clean Extract",
    description="Extract title, key metadata, readable text, and links. No noisy HTML.",
    allow_flagging="never",
    theme="Nymbo/Nymbo_Theme",
)

# --- Websearch tab (DuckDuckGo) ---
websearch_interface = gr.Interface(
    fn=web_search,  # (layman) connect the function to the UI
    inputs=[
        gr.Textbox(value="", label="Search query", placeholder="site:example.com interesting topic"),
        gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
    ],
    outputs=gr.JSON(label="Search results"),
    title="Websearch β€” DuckDuckGo",
    description="Search the web using DuckDuckGo; returns snippet, title, and link.",
    allow_flagging="never",
    theme="Nymbo/Nymbo_Theme",
)

# --- Combine both into a single app with tabs ---
demo = gr.TabbedInterface(
    interface_list=[fetch_interface, websearch_interface],
    tab_names=["Fetch", "Websearch"],
    title="Web MCP β€” Fetch + Websearch",
    theme="Nymbo/Nymbo_Theme",
)

# Launch the UI and expose both functions as MCP tools in one server
if __name__ == "__main__":
    demo.launch(mcp_server=True)