File size: 16,544 Bytes
a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 b923a7c a655b89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# File: main/app.py
# Purpose: One Space that offers three tools in one MCP server:
# 1) Fetch β extract relevant page content (title, metadata, clean text, hyperlinks)
# 2) Websearch β structured DuckDuckGo results (JSON via LangChain wrapper)
# 3) DDG (Unstructured) β compact plain-text DuckDuckGo results for low token usage
#
# Notes:
# - Launched with mcp_server=True so all functions are exposed as MCP tools.
# - UI uses TabbedInterface: each tool has its own tab.
# - Inline comments describe each section in plain language.
from __future__ import annotations
import re # (layman) used to tidy up whitespace
from typing import List, Dict, Literal, Tuple
import gradio as gr # (layman) the UI framework
import requests # (layman) to download web pages
from bs4 import BeautifulSoup # (layman) for parsing HTML
from readability import Document # (layman) to isolate main readable content
from urllib.parse import urljoin, urldefrag, urlparse # (layman) to fix/clean URLs
# Structured DDG search (LangChain wrapper)
from langchain_community.tools import DuckDuckGoSearchResults
# Unstructured DDG search (lightweight direct client)
from duckduckgo_search import DDGS
# ==============================
# Fetch: HTTP + extraction utils
# ==============================
def _http_get(url: str) -> requests.Response:
"""
(layman) Download the page politely with a short timeout and realistic headers.
"""
headers = {
"User-Agent": "Mozilla/5.0 (compatible; WebMCP/1.0; +https://example.com)",
"Accept-Language": "en-US,en;q=0.9",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
}
return requests.get(url, headers=headers, timeout=15)
def _normalize_whitespace(text: str) -> str:
"""
(layman) Squeeze extra spaces and blank lines to keep things compact.
"""
text = re.sub(r"[ \t\u00A0]+", " ", text)
text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
return text.strip()
def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
"""
(layman) Cut text if it gets too long; return the text and whether we trimmed.
"""
if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
return text, False
return text[:max_chars].rstrip() + " β¦", True
def _domain_of(url: str) -> str:
"""
(layman) Show a friendly site name like "example.com".
"""
try:
return urlparse(url).netloc or ""
except Exception:
return ""
def _meta(soup: BeautifulSoup, name: str) -> str | None:
tag = soup.find("meta", attrs={"name": name})
return tag.get("content") if tag and tag.has_attr("content") else None
def _og(soup: BeautifulSoup, prop: str) -> str | None:
tag = soup.find("meta", attrs={"property": prop})
return tag.get("content") if tag and tag.has_attr("content") else None
def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
"""
(layman) Pull the useful bits: title, description, site name, canonical URL, language, etc.
"""
meta: Dict[str, str] = {}
# Title preference: <title> > og:title > twitter:title
title_candidates = [
(soup.title.string if soup.title and soup.title.string else None),
_og(soup, "og:title"),
_meta(soup, "twitter:title"),
]
meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")
# Description preference: description > og:description > twitter:description
desc_candidates = [
_meta(soup, "description"),
_og(soup, "og:description"),
_meta(soup, "twitter:description"),
]
meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")
# Canonical link (helps dedupe)
link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""
# Site name + language info if present
meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
html_tag = soup.find("html")
meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""
# Final URL + domain
meta["fetched_url"] = final_url
meta["domain"] = _domain_of(final_url)
return meta
def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
"""
(layman) Use Readability to isolate the main article and turn it into clean text.
Returns (clean_text, soup_of_readable_html).
"""
# Simplified article HTML from Readability
doc = Document(html)
readable_html = doc.summary(html_partial=True)
# Parse simplified HTML
s = BeautifulSoup(readable_html, "lxml")
# Remove noisy tags
for sel in ["script", "style", "noscript", "iframe", "svg"]:
for tag in s.select(sel):
tag.decompose()
# Keep paragraphs, list items, and subheadings for structure without bloat
text_parts: List[str] = []
for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
chunk = p.get_text(" ", strip=True)
if chunk:
text_parts.append(chunk)
clean_text = _normalize_whitespace("\n\n".join(text_parts))
return clean_text, s
def _extract_links(readable_soup: BeautifulSoup, base_url: str, max_links: int) -> List[Tuple[str, str]]:
"""
(layman) Collect clean, unique, absolute links from the readable section only.
"""
seen = set()
links: List[Tuple[str, str]] = []
for a in readable_soup.find_all("a", href=True):
href = a.get("href").strip()
# Skip junk links we can't use
if not href or href.startswith("#") or href.startswith("mailto:") or href.startswith("javascript:"):
continue
# Resolve relative URLs, strip fragments (#β¦)
absolute = urljoin(base_url, href)
absolute, _ = urldefrag(absolute)
if absolute in seen:
continue
seen.add(absolute)
text = a.get_text(" ", strip=True)
if len(text) > 120:
text = text[:117] + "β¦"
links.append((text or absolute, absolute))
if len(links) >= max_links > 0:
break
return links
def _format_markdown(
meta: Dict[str, str],
body: str,
body_truncated: bool,
links: List[Tuple[str, str]],
include_text: bool,
include_metadata: bool,
include_links: bool,
verbosity: str,
) -> str:
"""
(layman) Assemble a compact Markdown summary with optional sections.
"""
lines: List[str] = []
# Title header
title = meta.get("title") or meta.get("domain") or "Untitled"
lines.append(f"# {title}")
# Metadata section (only show what exists)
if include_metadata:
md: List[str] = []
if meta.get("description"):
md.append(f"- **Description:** {meta['description']}")
if meta.get("site_name"):
md.append(f"- **Site:** {meta['site_name']}")
if meta.get("canonical"):
md.append(f"- **Canonical:** {meta['canonical']}")
if meta.get("lang"):
md.append(f"- **Language:** {meta['lang']}")
if meta.get("fetched_url"):
md.append(f"- **Fetched From:** {meta['fetched_url']}")
if md:
lines.append("## Metadata")
lines.extend(md)
# Body text
if include_text and body:
if verbosity == "Brief":
brief, was_more = _truncate(body, 800)
lines.append("## Text")
lines.append(brief)
if was_more or body_truncated:
lines.append("\n> (Trimmed for brevity)")
else:
lines.append("## Text")
lines.append(body)
if body_truncated:
lines.append("\n> (Trimmed for brevity)")
# Links section
if include_links and links:
lines.append(f"## Links ({len(links)})")
for text, url in links:
lines.append(f"- [{text}]({url})")
return "\n\n".join(lines).strip()
def extract_relevant( # <-- MCP tool #1
url: str,
verbosity: str = "Standard",
include_metadata: bool = True,
include_text: bool = True,
include_links: bool = True,
max_chars: int = 3000,
max_links: int = 20,
) -> str:
"""
(layman) Given a URL, return a tight Markdown summary: title, key metadata, readable text, and links.
"""
if not url or not url.strip():
return "Please enter a valid URL."
try:
resp = _http_get(url)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
return f"An error occurred: {e}"
final_url = str(resp.url)
ctype = resp.headers.get("Content-Type", "")
if "html" not in ctype.lower():
return f"Unsupported content type for extraction: {ctype or 'unknown'}"
# Decode to text
resp.encoding = resp.encoding or resp.apparent_encoding
html = resp.text
# Full-page soup for metadata
full_soup = BeautifulSoup(html, "lxml")
meta = _extract_metadata(full_soup, final_url)
# Readable content
body_text, readable_soup = _extract_main_text(html)
if not body_text:
# Fallback to "whole-page text" if Readability found nothing
fallback_text = full_soup.get_text(" ", strip=True)
body_text = _normalize_whitespace(fallback_text)
# Verbosity presets (we keep the smaller of preset vs. user cap)
preset_caps = {"Brief": 1200, "Standard": 3000, "Full": 999_999}
target_cap = preset_caps.get(verbosity, 3000)
cap = min(max_chars if max_chars > 0 else target_cap, target_cap)
body_text, truncated = _truncate(body_text, cap) if include_text else ("", False)
# Extract links from the simplified content only
links = _extract_links(readable_soup, final_url, max_links=max_links if include_links else 0)
# Final compact Markdown
md = _format_markdown(
meta=meta,
body=body_text,
body_truncated=truncated,
links=links,
include_text=include_text,
include_metadata=include_metadata,
include_links=include_links,
verbosity=verbosity,
)
return md or "No content could be extracted."
# ========================================
# Websearch (Structured): DuckDuckGo (JSON)
# ========================================
def web_search( # <-- MCP tool #2
input_query: str,
max_results: int = 5,
) -> List[Dict[Literal["snippet", "title", "link"], str]]:
"""
(layman) Run a DuckDuckGo search and return a list of {snippet, title, link}.
"""
if not input_query or not input_query.strip():
return []
# Create the search tool (LangChain community wrapper)
search = DuckDuckGoSearchResults(output_format="list", num_results=max_results)
# Run the search and return results as a list of dicts
results = search.invoke(input_query)
return results
# ===================================================
# DDG (Unstructured): compact plain-text, low tokens
# ===================================================
def web_search_unstructured( # <-- MCP tool #3
input_query: str,
max_results: int = 5,
style: Literal["urls", "titles+urls", "titles+urls+snippets"] = "titles+urls",
snippet_max_chars: int = 160,
) -> str:
"""
(layman) A lightweight DDG search that returns a plain-text list.
- Fewer tokens than JSON; great for quick scanning or piping into LLM prompts.
- 'style' controls how much text we include per line.
"""
if not input_query or not input_query.strip():
return ""
# (layman) Run the search using the lightweight DDG client
with DDGS() as ddgs:
results = list(ddgs.text(input_query, max_results=max_results))
# (layman) Normalize fields because DDG library keys can vary by version
lines: List[str] = []
for r in results:
title = (r.get("title") or "").strip()
url = (r.get("href") or r.get("link") or r.get("url") or "").strip()
snippet = (r.get("body") or r.get("snippet") or "").strip()
# (layman) Truncate snippet to keep output tight
if snippet_max_chars and len(snippet) > snippet_max_chars:
snippet = snippet[:snippet_max_chars - 1].rstrip() + "β¦"
# (layman) Build each line according to the chosen style
if style == "urls":
if url:
lines.append(url)
elif style == "titles+urls":
if title and url:
lines.append(f"{title} β {url}")
elif url:
lines.append(url)
elif title:
lines.append(title)
else: # titles+urls+snippets
if title and url and snippet:
lines.append(f"{title} β {url}\n {snippet}")
elif title and url:
lines.append(f"{title} β {url}")
elif url:
# (layman) If only URL is available, still show it
if snippet:
lines.append(f"{url}\n {snippet}")
else:
lines.append(url)
elif title:
if snippet:
lines.append(f"{title}\n {snippet}")
else:
lines.append(title)
# (layman) Join lines with newlines to form a compact text block
return "\n".join(lines).strip()
# =====================
# UI: three-tab interface
# =====================
# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
fn=extract_relevant, # (layman) connect the function to the UI
inputs=[
gr.Textbox(label="URL", placeholder="https://example.com/article"),
gr.Dropdown(label="Verbosity", choices=["Brief", "Standard", "Full"], value="Standard"),
gr.Checkbox(value=True, label="Include Metadata"),
gr.Checkbox(value=True, label="Include Main Text"),
gr.Checkbox(value=True, label="Include Links"),
gr.Slider(400, 12000, value=3000, step=100, label="Max Characters (body text)"),
gr.Slider(0, 100, value=20, step=1, label="Max Links"),
],
outputs=gr.Markdown(label="Extracted Summary"),
title="Fetch β Clean Extract",
description="Extract title, key metadata, readable text, and links. No noisy HTML.",
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
)
# --- Websearch tab (structured JSON) ---
websearch_interface = gr.Interface(
fn=web_search, # (layman) connect the function to the UI
inputs=[
gr.Textbox(value="", label="Search query", placeholder="site:example.com interesting topic"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
],
outputs=gr.JSON(label="Search results"),
title="Websearch β DuckDuckGo (JSON)",
description="Search the web using DuckDuckGo; returns snippet, title, and link as JSON.",
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
)
# --- DDG (Unstructured) tab (plain text, low tokens) ---
unstructured_interface = gr.Interface(
fn=web_search_unstructured, # (layman) connect the function to the UI
inputs=[
gr.Textbox(value="", label="Search query", placeholder="concise keywords"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
gr.Dropdown(
label="Output style",
choices=["urls", "titles+urls", "titles+urls+snippets"],
value="titles+urls",
info="Plain text list; choose how much detail to include."
),
gr.Slider(
minimum=40, maximum=400, value=160, step=10,
label="Snippet max chars",
info="Truncate snippet length to keep token usage low."
),
],
outputs=gr.Textbox(label="Results (plain text)", interactive=False),
title="DDG β Unstructured (Compact)",
description="Outputs a plain-text list (great for low-token prompts).",
allow_flagging="never",
theme="Nymbo/Nymbo_Theme",
)
# --- Combine all three into a single app with tabs ---
demo = gr.TabbedInterface(
interface_list=[fetch_interface, websearch_interface, unstructured_interface],
tab_names=["Fetch", "Websearch", "DDG (Unstructured)"],
)
# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
demo.launch(mcp_server=True)
|