Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,8 @@ import json
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
-
import requests
|
9 |
from smolagents.mcp_client import MCPClient
|
10 |
-
from mcp import ToolResult # For type hinting, good practice
|
11 |
-
from mcp.common.content_block import ValueContentBlock # To access the actual tool return value
|
12 |
-
import numpy as np # For handling audio array
|
13 |
-
import soundfile as sf # For converting audio array to WAV
|
14 |
|
15 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
16 |
print("Access token loaded.")
|
@@ -60,7 +56,7 @@ def connect_to_mcp_server(server_url, server_name=None):
|
|
60 |
tools = client.get_tools()
|
61 |
|
62 |
# Store the connection for later use
|
63 |
-
name = server_name or f"Server_{len(mcp_connections)}"
|
64 |
mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
|
65 |
|
66 |
return name, f"Successfully connected to {name} with {len(tools)} available tools"
|
@@ -86,115 +82,58 @@ def list_mcp_tools(server_name):
|
|
86 |
def call_mcp_tool(server_name, tool_name, **kwargs):
|
87 |
"""Call a specific tool from an MCP server"""
|
88 |
if server_name not in mcp_connections:
|
89 |
-
return
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
server_tools = client_data["tools"]
|
94 |
|
95 |
# Find the requested tool
|
96 |
-
tool = next((t for t in
|
97 |
if not tool:
|
98 |
-
return
|
99 |
-
|
100 |
try:
|
101 |
# Call the tool with provided arguments
|
102 |
-
|
103 |
-
|
104 |
-
actual_result = None
|
105 |
-
if mcp_tool_result.content:
|
106 |
-
content_block = mcp_tool_result.content[0]
|
107 |
-
if isinstance(content_block, ValueContentBlock):
|
108 |
-
actual_result = content_block.value
|
109 |
-
elif hasattr(content_block, 'text'): # e.g., TextContentBlock
|
110 |
-
actual_result = content_block.text
|
111 |
-
else:
|
112 |
-
actual_result = str(content_block) # Fallback
|
113 |
-
else: # No content
|
114 |
-
return {"warning": "Tool returned no content."}
|
115 |
-
|
116 |
-
|
117 |
-
# Special handling for audio result (e.g., from Kokoro TTS)
|
118 |
-
# This checks if the result is a tuple (sample_rate, audio_data_list)
|
119 |
-
# Gradio MCP server serializes numpy arrays to lists.
|
120 |
-
if (server_name == "kokoroTTS" and tool_name == "text_to_audio" and
|
121 |
-
isinstance(actual_result, tuple) and len(actual_result) == 2 and
|
122 |
-
isinstance(actual_result[0], int) and
|
123 |
-
(isinstance(actual_result[1], list) or isinstance(actual_result[1], np.ndarray))):
|
124 |
-
|
125 |
-
print(f"Received audio data from {server_name}.{tool_name}")
|
126 |
-
sample_rate, audio_data_list = actual_result
|
127 |
-
|
128 |
-
# Convert list to numpy array if necessary
|
129 |
-
audio_data = np.array(audio_data_list)
|
130 |
-
|
131 |
-
# Ensure correct dtype for soundfile (float32 is common, or int16)
|
132 |
-
# Kokoro returns float, likely in [-1, 1] range.
|
133 |
-
if audio_data.dtype != np.float32 and audio_data.dtype != np.int16:
|
134 |
-
# Attempt to normalize if it looks like it's not in [-1, 1] for float
|
135 |
-
if np.issubdtype(audio_data.dtype, np.floating) and (np.min(audio_data) < -1.1 or np.max(audio_data) > 1.1):
|
136 |
-
print(f"Warning: Audio data for {server_name}.{tool_name} might not be normalized. Min: {np.min(audio_data)}, Max: {np.max(audio_data)}")
|
137 |
-
audio_data = audio_data.astype(np.float32)
|
138 |
-
|
139 |
-
wav_io = io.BytesIO()
|
140 |
-
sf.write(wav_io, audio_data, sample_rate, format='WAV')
|
141 |
-
wav_io.seek(0)
|
142 |
-
|
143 |
-
wav_b64 = base64.b64encode(wav_io.read()).decode('utf-8')
|
144 |
-
|
145 |
-
return {
|
146 |
-
"type": "audio_b64",
|
147 |
-
"data": wav_b64,
|
148 |
-
"message": f"Audio generated by {server_name}.{tool_name}"
|
149 |
-
}
|
150 |
|
151 |
-
#
|
152 |
-
|
153 |
-
|
154 |
-
elif isinstance(actual_result, str):
|
155 |
-
try: # If string is JSON, parse to dict
|
156 |
-
return json.loads(actual_result)
|
157 |
-
except json.JSONDecodeError:
|
158 |
-
return {"text": actual_result} # Wrap raw string
|
159 |
-
else:
|
160 |
-
return {"value": str(actual_result)} # Fallback for other primitive types
|
161 |
-
|
162 |
except Exception as e:
|
163 |
print(f"Error calling MCP tool: {e}")
|
164 |
-
|
165 |
-
traceback.print_exc()
|
166 |
-
return {"error": f"Error calling MCP tool: {str(e)}"}
|
167 |
|
168 |
-
def analyze_message_for_tool_call(message, active_mcp_servers,
|
169 |
"""Analyze a message to determine if an MCP tool should be called"""
|
|
|
170 |
if not message or not message.strip():
|
171 |
return None, None
|
172 |
|
|
|
173 |
tool_info = []
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
"server_name": server_name,
|
185 |
-
"tool_name": parts[0].strip(),
|
186 |
-
"description": parts[1].strip()
|
187 |
-
})
|
188 |
|
189 |
if not tool_info:
|
190 |
return None, None
|
191 |
|
|
|
192 |
tools_desc = []
|
193 |
for info in tool_info:
|
194 |
tools_desc.append(f"{info['server_name']}.{info['tool_name']}: {info['description']}")
|
195 |
|
196 |
tools_string = "\n".join(tools_desc)
|
197 |
|
|
|
198 |
analysis_system_prompt = f"""You are an assistant that helps determine if a user message requires using an external tool.
|
199 |
Available tools:
|
200 |
{tools_string}
|
@@ -205,48 +144,63 @@ Your job is to:
|
|
205 |
3. If yes, respond ONLY with a JSON object with "server_name", "tool_name", and "parameters".
|
206 |
4. If no, respond ONLY with the exact string "NO_TOOL_NEEDED".
|
207 |
|
208 |
-
Example 1 (
|
209 |
User: "Please turn this text into speech: Hello world"
|
210 |
-
Response: {{"server_name": "kokoroTTS", "tool_name": "
|
211 |
|
212 |
-
Example 2 (
|
213 |
-
User: "
|
214 |
-
Response: {{"server_name": "
|
215 |
|
216 |
-
Example 3 (
|
217 |
User: "What is the capital of France?"
|
218 |
Response: NO_TOOL_NEEDED"""
|
219 |
|
220 |
try:
|
221 |
-
|
|
|
222 |
model=model_to_use,
|
223 |
messages=[
|
224 |
{"role": "system", "content": analysis_system_prompt},
|
225 |
{"role": "user", "content": message}
|
226 |
],
|
227 |
-
temperature=0.1,
|
228 |
max_tokens=300
|
229 |
)
|
230 |
|
231 |
analysis = response.choices[0].message.content.strip()
|
232 |
-
print(f"Tool analysis
|
233 |
|
234 |
if analysis == "NO_TOOL_NEEDED":
|
235 |
return None, None
|
236 |
|
|
|
237 |
try:
|
238 |
tool_call = json.loads(analysis)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
else:
|
245 |
-
print(f"
|
246 |
return None, None
|
247 |
-
except json.JSONDecodeError:
|
248 |
-
print(f"Failed to parse tool call JSON from LLM: {analysis}")
|
249 |
-
return None, None
|
250 |
|
251 |
except Exception as e:
|
252 |
print(f"Error analyzing message for tool calls: {str(e)}")
|
@@ -273,7 +227,7 @@ def respond(
|
|
273 |
):
|
274 |
print(f"Received message: {message}")
|
275 |
print(f"Received {len(image_files) if image_files else 0} images")
|
276 |
-
# print(f"History: {history}") # Can be verbose
|
277 |
print(f"System message: {system_message}")
|
278 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
279 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
@@ -293,7 +247,7 @@ def respond(
|
|
293 |
else:
|
294 |
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
295 |
|
296 |
-
|
297 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
298 |
|
299 |
if seed == -1:
|
@@ -310,134 +264,142 @@ def respond(
|
|
310 |
return
|
311 |
|
312 |
_, server_name, tool_name = command_parts[:3]
|
313 |
-
|
314 |
|
315 |
try:
|
316 |
-
args_dict = json.loads(
|
317 |
result = call_mcp_tool(server_name, tool_name, **args_dict)
|
318 |
-
|
319 |
-
if
|
320 |
-
|
321 |
-
|
322 |
-
yield f"Error: {result.get('error')}"
|
323 |
elif isinstance(result, dict):
|
324 |
yield json.dumps(result, indent=2)
|
325 |
else:
|
326 |
-
yield str(result)
|
327 |
-
return
|
328 |
except json.JSONDecodeError:
|
329 |
-
yield f"Invalid JSON arguments: {
|
330 |
return
|
331 |
except Exception as e:
|
332 |
yield f"Error executing MCP command: {str(e)}"
|
333 |
return
|
334 |
-
elif mcp_interaction_mode == "Natural Language" and active_mcp_servers
|
335 |
-
print("Attempting natural language tool call detection...")
|
336 |
server_name, tool_info = analyze_message_for_tool_call(
|
337 |
-
message,
|
|
|
|
|
|
|
|
|
338 |
)
|
339 |
|
340 |
if server_name and tool_info and tool_info.get("tool_name"):
|
341 |
try:
|
342 |
-
print(f"Calling tool via natural language: {server_name}.{tool_info['tool_name']} with parameters: {tool_info
|
343 |
result = call_mcp_tool(server_name, tool_info['tool_name'], **tool_info.get('parameters', {}))
|
344 |
|
345 |
-
|
346 |
-
if isinstance(result,
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
if isinstance(result, dict) and result.get("type") == "audio_b64":
|
351 |
-
audio_html = f"<audio controls src=\"data:audio/wav;base64,{result.get('data')}\"></audio>"
|
352 |
-
yield response_message + audio_html
|
353 |
-
elif isinstance(result, dict) and "error" in result:
|
354 |
-
result_str = f"Tool Error: {result.get('error')}"
|
355 |
-
yield response_message + result_str
|
356 |
elif isinstance(result, dict):
|
357 |
-
result_str =
|
358 |
-
yield
|
359 |
else:
|
360 |
-
result_str =
|
361 |
-
yield
|
362 |
-
return
|
363 |
except Exception as e:
|
364 |
print(f"Error executing MCP tool via natural language: {str(e)}")
|
365 |
-
|
366 |
-
# Fall through to normal LLM response if tool call fails
|
367 |
-
else:
|
368 |
-
print("No tool call detected by natural language analysis or tool_info incomplete.")
|
369 |
-
|
370 |
|
371 |
-
|
372 |
if message and message.strip():
|
373 |
-
|
374 |
|
375 |
if image_files and len(image_files) > 0:
|
376 |
for img_path in image_files:
|
377 |
-
if img_path:
|
378 |
try:
|
379 |
encoded_image = encode_image(img_path)
|
380 |
if encoded_image:
|
381 |
-
|
382 |
"type": "image_url",
|
383 |
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
|
384 |
})
|
385 |
except Exception as e:
|
386 |
-
print(f"Error encoding image
|
387 |
|
388 |
-
if not
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
# However, the logic above for MCP commands uses `yield ...; return`, so this path might not be hit often.
|
393 |
-
# If it *is* hit, it means the MCP command didn't yield, and we should not proceed to LLM.
|
394 |
-
if message and message.startswith("/mcp"):
|
395 |
-
return # Ensure we don't fall through after a command that should have yielded.
|
396 |
|
397 |
|
398 |
-
final_user_content = user_content_parts if len(user_content_parts) > 1 else (user_content_parts[0] if user_content_parts else "")
|
399 |
-
|
400 |
augmented_system_message = system_message
|
401 |
if mcp_enabled and active_mcp_servers:
|
402 |
-
|
403 |
-
for
|
404 |
-
if
|
405 |
-
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
|
|
408 |
|
409 |
-
if
|
410 |
-
|
411 |
|
|
|
|
|
|
|
412 |
if mcp_interaction_mode == "Command Mode":
|
413 |
-
augmented_system_message += f"\n\nYou have access to the following MCP tools
|
414 |
else: # Natural Language
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
418 |
print("Initial messages array constructed.")
|
419 |
|
420 |
-
for
|
421 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
if isinstance(past_user_msg, list): # Already multimodal
|
426 |
-
messages_for_api.append({"role": "user", "content": past_user_msg})
|
427 |
-
elif isinstance(past_user_msg, str): # Text only
|
428 |
-
messages_for_api.append({"role": "user", "content": past_user_msg})
|
429 |
|
430 |
-
if
|
431 |
-
|
|
|
|
|
|
|
|
|
432 |
|
433 |
-
if final_user_content: # Add current user message if it exists
|
434 |
-
messages_for_api.append({"role": "user", "content": final_user_content})
|
435 |
-
|
436 |
-
print(f"Latest user message appended (content type: {type(final_user_content)})")
|
437 |
-
# print(f"Full messages_for_api: {json.dumps(messages_for_api, indent=2)}") # Can be very verbose
|
438 |
|
439 |
-
|
440 |
-
print(f"
|
|
|
|
|
|
|
|
|
441 |
|
442 |
parameters = {
|
443 |
"max_tokens": max_tokens,
|
@@ -450,39 +412,37 @@ def respond(
|
|
450 |
parameters["seed"] = seed
|
451 |
|
452 |
try:
|
453 |
-
stream =
|
454 |
model=model_to_use,
|
455 |
-
messages=
|
456 |
stream=True,
|
457 |
**parameters
|
458 |
)
|
459 |
|
460 |
-
|
461 |
|
462 |
for chunk in stream:
|
463 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
464 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
465 |
token_text = chunk.choices[0].delta.content
|
466 |
if token_text:
|
467 |
-
|
468 |
-
|
469 |
-
yield
|
470 |
-
|
471 |
-
# print() # Newline after tokens
|
472 |
except Exception as e:
|
473 |
print(f"Error during LLM inference: {e}")
|
474 |
-
|
475 |
-
yield
|
476 |
|
477 |
print("Completed LLM response generation.")
|
478 |
|
479 |
-
|
480 |
# GRADIO UI
|
481 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
482 |
chatbot = gr.Chatbot(
|
483 |
height=600,
|
484 |
show_copy_button=True,
|
485 |
-
placeholder="Select a model and begin chatting.
|
486 |
layout="panel",
|
487 |
show_label=False,
|
488 |
render=False # Delay rendering
|
@@ -493,7 +453,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
493 |
msg = gr.MultimodalTextbox(
|
494 |
placeholder="Type a message or upload images...",
|
495 |
show_label=False,
|
496 |
-
container=
|
497 |
scale=12,
|
498 |
file_types=["image"],
|
499 |
file_count="multiple",
|
@@ -501,238 +461,143 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
501 |
render=False # Delay rendering
|
502 |
)
|
503 |
|
|
|
504 |
chatbot.render()
|
505 |
msg.render()
|
506 |
|
507 |
with gr.Accordion("Settings", open=False):
|
508 |
system_message_box = gr.Textbox(
|
509 |
-
value="You are a helpful AI assistant that can understand images and text.
|
510 |
placeholder="You are a helpful assistant.",
|
511 |
label="System Prompt"
|
512 |
)
|
513 |
|
514 |
with gr.Row():
|
515 |
-
with gr.Column(
|
516 |
-
max_tokens_slider = gr.Slider(minimum=1, maximum=
|
517 |
-
temperature_slider = gr.Slider(minimum=0.
|
518 |
-
top_p_slider = gr.Slider(minimum=0.
|
519 |
-
with gr.Column(
|
520 |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
521 |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
522 |
|
523 |
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
524 |
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
|
525 |
-
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. If empty, only 'hf-inference' provider can be used with the
|
526 |
-
custom_model_box = gr.Textbox(value="", label="Custom Model
|
527 |
-
|
528 |
-
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search for a featured model...", lines=1)
|
529 |
|
530 |
models_list = [
|
531 |
-
"meta-llama/Llama-3.1-405B-Instruct
|
532 |
-
"meta-llama/Llama-3
|
533 |
-
"
|
534 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
535 |
-
"Qwen/Qwen2-72B-Instruct",
|
536 |
-
"
|
|
|
537 |
"CohereForAI/c4ai-command-r-plus",
|
538 |
-
|
539 |
-
"
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
"google/paligemma-3b-mix-448",
|
544 |
-
# Older but still popular
|
545 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
546 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
547 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
548 |
-
]
|
549 |
-
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.1-8B-Instruct", interactive=True)
|
550 |
-
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?pipeline_tag=image-to-text&sort=trending)")
|
551 |
|
552 |
with gr.Accordion("MCP Settings", open=False):
|
553 |
-
mcp_enabled_checkbox = gr.Checkbox(label="Enable MCP Support", value=False, info="Enable Model Context Protocol support
|
554 |
with gr.Row():
|
555 |
-
mcp_server_url = gr.Textbox(label="MCP Server URL", placeholder="https://your-mcp-server.hf.space/gradio_api/mcp/sse"
|
556 |
-
mcp_server_name = gr.Textbox(label="Server Name (Optional)", placeholder="e.g., kokoroTTS"
|
557 |
mcp_connect_button = gr.Button("Connect to MCP Server")
|
558 |
-
|
559 |
mcp_status = gr.Textbox(label="MCP Connection Status", placeholder="No MCP servers connected", interactive=False)
|
560 |
-
active_mcp_servers = gr.Dropdown(label="Active MCP Servers for Chat", choices=[], multiselect=True, info="Select which connected MCP servers to
|
561 |
-
mcp_mode = gr.Radio(label="MCP Interaction Mode", choices=["Natural Language", "Command Mode"], value="Natural Language", info="
|
562 |
-
|
563 |
gr.Markdown("""
|
564 |
-
### MCP Interaction Modes
|
565 |
-
**Natural Language
|
566 |
-
|
567 |
-
`Use my speech tool to read this: "Welcome"`
|
568 |
-
|
569 |
-
**Command Mode**: Use structured commands (server name must match connected server's friendly name).
|
570 |
-
`/mcp <server_name> <tool_name> {"param1": "value1"}`
|
571 |
-
Example: `/mcp kokoroTTS text_to_audio {"text": "Hello world", "speed": 1.0}`
|
572 |
""")
|
573 |
|
574 |
-
#
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
def filter_models_ui_update(search_term):
|
579 |
print(f"Filtering models with search term: {search_term}")
|
|
|
580 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
581 |
-
if not filtered: # If search yields no results, show all models
|
582 |
-
filtered = models_list
|
583 |
print(f"Filtered models: {filtered}")
|
584 |
-
return gr.
|
585 |
|
586 |
-
def
|
587 |
print(f"Featured model selected: {selected_featured_model}")
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
current_selection = active_mcp_servers.value if active_mcp_servers.value else []
|
595 |
-
|
596 |
-
if actual_name and actual_name not in
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
#
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
|
|
|
|
606 |
|
607 |
-
#
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
if text_content:
|
612 |
-
user_turn_for_api.append({"type": "text", "text": text_content})
|
613 |
-
user_turn_for_display = text_content
|
614 |
|
|
|
|
|
|
|
615 |
if files:
|
616 |
-
display_files_md = ""
|
617 |
for file_path in files:
|
618 |
-
|
619 |
-
encoded_img = encode_image(file_path) # For API
|
620 |
-
if encoded_img:
|
621 |
-
user_turn_for_api.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}})
|
622 |
-
# For display, Gradio handles showing the image from MultimodalTextbox output
|
623 |
-
# We'll just make a note in the display string
|
624 |
-
display_files_md += f"\n<img src='file={file_path}' style='max-height:150px; display:block;' alt='uploaded image'>" # Gradio can render this!
|
625 |
-
|
626 |
-
if user_turn_for_display:
|
627 |
-
user_turn_for_display += display_files_md
|
628 |
-
else:
|
629 |
-
user_turn_for_display = display_files_md if display_files_md else "Image(s) uploaded"
|
630 |
-
|
631 |
|
632 |
-
|
633 |
-
return history_list, multimodal_input # No change
|
634 |
-
|
635 |
-
# The `respond` function expects history as list of [user_api_content, assistant_text_content]
|
636 |
-
# For the current turn, we add [user_api_content, None]
|
637 |
-
# The display history for chatbot is [user_display_content, assistant_text_content]
|
638 |
-
|
639 |
-
# We pass the API-formatted user turn to the `message` arg of `respond`
|
640 |
-
# and the existing history to the `history` arg.
|
641 |
-
# The chatbot's display history is updated here.
|
642 |
-
|
643 |
-
history_list.append([user_turn_for_display, None])
|
644 |
-
return history_list, user_turn_for_api # Return updated history and the API formatted current message
|
645 |
|
646 |
|
647 |
-
#
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
|
|
|
|
|
|
|
|
|
|
652 |
return
|
653 |
|
654 |
-
#
|
655 |
-
#
|
656 |
-
|
657 |
-
# This reconstruction is tricky because display != api format.
|
658 |
-
# For simplicity, we'll pass only the text part of history to `respond` for now,
|
659 |
-
# and the full current_user_api_content for the current message.
|
660 |
-
# A more robust solution would store API history separately.
|
661 |
-
|
662 |
-
# Simplified history for `respond` (text only from past turns)
|
663 |
-
# The `respond` function itself needs to be robust to handle this.
|
664 |
-
# Let's adjust `respond` to take `message` (current API content) and `image_files` (current files)
|
665 |
-
# and `history` (past turns, which we'll simplify here).
|
666 |
-
|
667 |
-
# The `respond` function is already structured to take `message` (text) and `image_files`
|
668 |
-
# The `current_user_api_content` is what we need to pass as `message` (if text) or `image_files`
|
669 |
-
|
670 |
-
current_message_text = ""
|
671 |
-
current_image_paths = []
|
672 |
-
|
673 |
-
if isinstance(current_user_api_content, list): # Multimodal
|
674 |
-
for part in current_user_api_content:
|
675 |
-
if part["type"] == "text":
|
676 |
-
current_message_text = part["text"]
|
677 |
-
elif part["type"] == "image_url":
|
678 |
-
# We can't easily get back the path from base64 for `respond`'s current design
|
679 |
-
# This indicates a slight mismatch. `respond` expects paths for current images.
|
680 |
-
# For now, let's assume `respond` can handle base64 if passed correctly.
|
681 |
-
# Or, we modify `handle_user_input` to also pass original paths if needed by `respond`.
|
682 |
-
# Let's assume `respond`'s `image_files` param can take base64 strings for now.
|
683 |
-
# This is a simplification.
|
684 |
-
# The `encode_image` in `respond` expects paths.
|
685 |
-
# For now, we'll pass None for image_files if it's already in current_user_api_content.
|
686 |
-
# This part needs careful review of how `respond` handles current images.
|
687 |
-
# The `respond` function's `image_files` parameter is for new uploads.
|
688 |
-
# If `current_user_api_content` already has encoded images, `respond` should use that.
|
689 |
-
# The `respond` function's first two args are `message` (text) and `image_files` (paths).
|
690 |
-
# We need to extract these from `current_user_api_content`.
|
691 |
-
pass # Images are part of `current_user_api_content` which is passed to `messages_for_api`
|
692 |
-
elif isinstance(current_user_api_content, str): # Text only
|
693 |
-
current_message_text = current_user_api_content
|
694 |
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
simplified_past_history.append([user_text_for_hist, assistant_text])
|
709 |
-
|
710 |
-
|
711 |
-
# The `respond` function's first argument is `message` (current text)
|
712 |
-
# and `image_files` (current image paths).
|
713 |
-
# We need to extract these from `current_user_api_content` if it was prepared by `handle_user_input`.
|
714 |
-
# For now, let's assume `respond` will get the full `current_user_api_content` via `messages_for_api`.
|
715 |
-
# The first two args of `respond` are for the *current* turn's text and image paths.
|
716 |
-
|
717 |
-
# Let's get current text and image paths from `current_user_api_content`
|
718 |
-
# This is slightly redundant as `respond` also reconstructs this, but for clarity:
|
719 |
-
_current_text_for_respond = ""
|
720 |
-
_current_image_paths_for_respond = [] # `respond` expects paths
|
721 |
-
|
722 |
-
if isinstance(current_user_api_content, list):
|
723 |
-
for item in current_user_api_content:
|
724 |
-
if item['type'] == 'text':
|
725 |
-
_current_text_for_respond = item['text']
|
726 |
-
# We can't get paths back from base64 easily.
|
727 |
-
# This highlights that `respond` needs to be able to take already processed multimodal content.
|
728 |
-
# For now, we'll assume `respond` internally uses the `messages_for_api` which has the full content.
|
729 |
-
# So, we can pass `_current_text_for_respond` and `None` for image_files if images are already in API format.
|
730 |
-
|
731 |
-
|
732 |
-
bot_response_stream = respond(
|
733 |
-
message=_current_text_for_respond, # Current text
|
734 |
-
image_files=None, # Assume images are handled by messages_for_api construction in respond
|
735 |
-
history=simplified_past_history, # Past turns
|
736 |
system_message=sys_msg,
|
737 |
max_tokens=max_tok,
|
738 |
temperature=temp,
|
@@ -742,57 +607,77 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
742 |
provider=prov,
|
743 |
custom_api_key=api_key_val,
|
744 |
custom_model=cust_model,
|
745 |
-
model_search_term=
|
746 |
-
selected_model=
|
747 |
mcp_enabled=mcp_on,
|
748 |
active_mcp_servers=active_servs,
|
749 |
-
mcp_interaction_mode=
|
750 |
-
)
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
756 |
|
757 |
-
# This state will hold the API-formatted content of the current user message
|
758 |
-
current_api_message_state = gr.State(None)
|
759 |
|
|
|
760 |
msg.submit(
|
761 |
-
|
762 |
-
[msg,
|
763 |
-
[chatbot,
|
|
|
764 |
).then(
|
765 |
-
|
766 |
-
[
|
767 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
768 |
model_search_box, featured_model_radio, mcp_enabled_checkbox, active_mcp_servers, mcp_mode],
|
769 |
-
[chatbot] # Update chatbot
|
770 |
).then(
|
771 |
-
lambda: gr.
|
772 |
None,
|
773 |
-
[msg]
|
|
|
774 |
)
|
775 |
|
776 |
mcp_connect_button.click(
|
777 |
-
|
778 |
[mcp_server_url, mcp_server_name],
|
779 |
[mcp_status, active_mcp_servers]
|
780 |
)
|
781 |
|
782 |
-
model_search_box.change(fn=
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
|
|
|
|
790 |
|
791 |
-
byok_textbox.change(fn=
|
792 |
-
provider_radio.change(fn=
|
793 |
|
794 |
print("Gradio interface initialized.")
|
795 |
|
796 |
if __name__ == "__main__":
|
797 |
print("Launching the demo application.")
|
798 |
-
demo.queue().launch(show_api=False,
|
|
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
import requests # Retained, though not directly used in the core logic shown for modification
|
9 |
from smolagents.mcp_client import MCPClient
|
|
|
|
|
|
|
|
|
10 |
|
11 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
12 |
print("Access token loaded.")
|
|
|
56 |
tools = client.get_tools()
|
57 |
|
58 |
# Store the connection for later use
|
59 |
+
name = server_name or f"Server_{len(mcp_connections)}_{base64.urlsafe_b64encode(os.urandom(3)).decode()}" # Ensure unique name
|
60 |
mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
|
61 |
|
62 |
return name, f"Successfully connected to {name} with {len(tools)} available tools"
|
|
|
82 |
def call_mcp_tool(server_name, tool_name, **kwargs):
|
83 |
"""Call a specific tool from an MCP server"""
|
84 |
if server_name not in mcp_connections:
|
85 |
+
return f"Server '{server_name}' not connected"
|
86 |
|
87 |
+
client = mcp_connections[server_name]["client"]
|
88 |
+
tools = mcp_connections[server_name]["tools"]
|
|
|
89 |
|
90 |
# Find the requested tool
|
91 |
+
tool = next((t for t in tools if t.name == tool_name), None)
|
92 |
if not tool:
|
93 |
+
return f"Tool '{tool_name}' not found on server '{server_name}'"
|
94 |
+
|
95 |
try:
|
96 |
# Call the tool with provided arguments
|
97 |
+
# The mcp_client's call_tool is expected to return the direct result from the tool
|
98 |
+
result = client.call_tool(tool_name, kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# The result here could be a string (e.g. base64 audio), a dict, or other types
|
101 |
+
# depending on the MCP tool. The `respond` function will handle formatting.
|
102 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
except Exception as e:
|
104 |
print(f"Error calling MCP tool: {e}")
|
105 |
+
return f"Error calling MCP tool: {str(e)}"
|
|
|
|
|
106 |
|
107 |
+
def analyze_message_for_tool_call(message, active_mcp_servers, client_for_llm, model_to_use, system_message_for_llm):
|
108 |
"""Analyze a message to determine if an MCP tool should be called"""
|
109 |
+
# Skip analysis if message is empty
|
110 |
if not message or not message.strip():
|
111 |
return None, None
|
112 |
|
113 |
+
# Get information about available tools
|
114 |
tool_info = []
|
115 |
+
if active_mcp_servers:
|
116 |
+
for server_name in active_mcp_servers:
|
117 |
+
if server_name in mcp_connections:
|
118 |
+
server_tools = mcp_connections[server_name]["tools"]
|
119 |
+
for tool in server_tools:
|
120 |
+
tool_info.append({
|
121 |
+
"server_name": server_name,
|
122 |
+
"tool_name": tool.name,
|
123 |
+
"description": tool.description
|
124 |
+
})
|
|
|
|
|
|
|
|
|
125 |
|
126 |
if not tool_info:
|
127 |
return None, None
|
128 |
|
129 |
+
# Create a structured query for the LLM to analyze if a tool call is needed
|
130 |
tools_desc = []
|
131 |
for info in tool_info:
|
132 |
tools_desc.append(f"{info['server_name']}.{info['tool_name']}: {info['description']}")
|
133 |
|
134 |
tools_string = "\n".join(tools_desc)
|
135 |
|
136 |
+
# Updated prompt to guide LLM for TTS tool that returns base64
|
137 |
analysis_system_prompt = f"""You are an assistant that helps determine if a user message requires using an external tool.
|
138 |
Available tools:
|
139 |
{tools_string}
|
|
|
144 |
3. If yes, respond ONLY with a JSON object with "server_name", "tool_name", and "parameters".
|
145 |
4. If no, respond ONLY with the exact string "NO_TOOL_NEEDED".
|
146 |
|
147 |
+
Example 1 (for TTS that returns base64 audio):
|
148 |
User: "Please turn this text into speech: Hello world"
|
149 |
+
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio_b64", "parameters": {{"text": "Hello world", "speed": 1.0}}}}
|
150 |
|
151 |
+
Example 2 (for TTS with different speed):
|
152 |
+
User: "Read 'This is faster' at speed 1.5"
|
153 |
+
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio_b64", "parameters": {{"text": "This is faster", "speed": 1.5}}}}
|
154 |
|
155 |
+
Example 3 (general, non-tool):
|
156 |
User: "What is the capital of France?"
|
157 |
Response: NO_TOOL_NEEDED"""
|
158 |
|
159 |
try:
|
160 |
+
# Call the LLM to analyze the message
|
161 |
+
response = client_for_llm.chat_completion(
|
162 |
model=model_to_use,
|
163 |
messages=[
|
164 |
{"role": "system", "content": analysis_system_prompt},
|
165 |
{"role": "user", "content": message}
|
166 |
],
|
167 |
+
temperature=0.1, # Low temperature for deterministic tool selection
|
168 |
max_tokens=300
|
169 |
)
|
170 |
|
171 |
analysis = response.choices[0].message.content.strip()
|
172 |
+
print(f"Tool analysis raw response: '{analysis}'")
|
173 |
|
174 |
if analysis == "NO_TOOL_NEEDED":
|
175 |
return None, None
|
176 |
|
177 |
+
# Try to parse JSON directly from the response
|
178 |
try:
|
179 |
tool_call = json.loads(analysis)
|
180 |
+
return tool_call.get("server_name"), {
|
181 |
+
"tool_name": tool_call.get("tool_name"),
|
182 |
+
"parameters": tool_call.get("parameters", {})
|
183 |
+
}
|
184 |
+
except json.JSONDecodeError:
|
185 |
+
print(f"Failed to parse tool call JSON directly from: {analysis}")
|
186 |
+
# Fallback to extracting JSON if not a direct JSON response
|
187 |
+
json_start = analysis.find("{")
|
188 |
+
json_end = analysis.rfind("}") + 1
|
189 |
+
|
190 |
+
if json_start != -1 and json_end != 0 and json_end > json_start:
|
191 |
+
json_str = analysis[json_start:json_end]
|
192 |
+
try:
|
193 |
+
tool_call = json.loads(json_str)
|
194 |
+
return tool_call.get("server_name"), {
|
195 |
+
"tool_name": tool_call.get("tool_name"),
|
196 |
+
"parameters": tool_call.get("parameters", {})
|
197 |
+
}
|
198 |
+
except json.JSONDecodeError:
|
199 |
+
print(f"Failed to parse extracted tool call JSON: {json_str}")
|
200 |
+
return None, None
|
201 |
else:
|
202 |
+
print(f"No JSON object found in analysis: {analysis}")
|
203 |
return None, None
|
|
|
|
|
|
|
204 |
|
205 |
except Exception as e:
|
206 |
print(f"Error analyzing message for tool calls: {str(e)}")
|
|
|
227 |
):
|
228 |
print(f"Received message: {message}")
|
229 |
print(f"Received {len(image_files) if image_files else 0} images")
|
230 |
+
# print(f"History: {history}") # Can be very verbose
|
231 |
print(f"System message: {system_message}")
|
232 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
233 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
|
247 |
else:
|
248 |
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
249 |
|
250 |
+
client_for_llm = InferenceClient(token=token_to_use, provider=provider)
|
251 |
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
252 |
|
253 |
if seed == -1:
|
|
|
264 |
return
|
265 |
|
266 |
_, server_name, tool_name = command_parts[:3]
|
267 |
+
args_json_str = "{}" if len(command_parts) < 4 else command_parts[3]
|
268 |
|
269 |
try:
|
270 |
+
args_dict = json.loads(args_json_str)
|
271 |
result = call_mcp_tool(server_name, tool_name, **args_dict)
|
272 |
+
|
273 |
+
if "audio" in tool_name.lower() and "b64" in tool_name.lower() and isinstance(result, str):
|
274 |
+
audio_html = f'<audio controls src="data:audio/wav;base64,{result}"></audio>'
|
275 |
+
yield f"Executed {tool_name} from {server_name}.\n\nResult:\n{audio_html}"
|
|
|
276 |
elif isinstance(result, dict):
|
277 |
yield json.dumps(result, indent=2)
|
278 |
else:
|
279 |
+
yield str(result)
|
280 |
+
return # MCP command handled, exit
|
281 |
except json.JSONDecodeError:
|
282 |
+
yield f"Invalid JSON arguments: {args_json_str}"
|
283 |
return
|
284 |
except Exception as e:
|
285 |
yield f"Error executing MCP command: {str(e)}"
|
286 |
return
|
287 |
+
elif mcp_interaction_mode == "Natural Language" and active_mcp_servers:
|
|
|
288 |
server_name, tool_info = analyze_message_for_tool_call(
|
289 |
+
message,
|
290 |
+
active_mcp_servers,
|
291 |
+
client_for_llm,
|
292 |
+
model_to_use,
|
293 |
+
system_message # Original system message for context, LLM uses its own for analysis
|
294 |
)
|
295 |
|
296 |
if server_name and tool_info and tool_info.get("tool_name"):
|
297 |
try:
|
298 |
+
print(f"Calling tool via natural language: {server_name}.{tool_info['tool_name']} with parameters: {tool_info.get('parameters', {})}")
|
299 |
result = call_mcp_tool(server_name, tool_info['tool_name'], **tool_info.get('parameters', {}))
|
300 |
|
301 |
+
tool_display_name = tool_info['tool_name']
|
302 |
+
if "audio" in tool_display_name.lower() and "b64" in tool_display_name.lower() and isinstance(result, str) and len(result) > 100: # Heuristic for base64 audio
|
303 |
+
audio_html = f'<audio controls src="data:audio/wav;base64,{result}"></audio>'
|
304 |
+
yield f"I used the {tool_display_name} tool from {server_name} with your request.\n\nResult:\n{audio_html}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
elif isinstance(result, dict):
|
306 |
+
result_str = json.dumps(result, indent=2)
|
307 |
+
yield f"I used the {tool_display_name} tool from {server_name} with your request.\n\nResult:\n{result_str}"
|
308 |
else:
|
309 |
+
result_str = str(result)
|
310 |
+
yield f"I used the {tool_display_name} tool from {server_name} with your request.\n\nResult:\n{result_str}"
|
311 |
+
return # MCP tool call handled via natural language
|
312 |
except Exception as e:
|
313 |
print(f"Error executing MCP tool via natural language: {str(e)}")
|
314 |
+
yield f"I tried to use a tool but encountered an error: {str(e)}. I will try to respond without it."
|
315 |
+
# Fall through to normal LLM response if tool call fails
|
|
|
|
|
|
|
316 |
|
317 |
+
user_content = []
|
318 |
if message and message.strip():
|
319 |
+
user_content.append({"type": "text", "text": message})
|
320 |
|
321 |
if image_files and len(image_files) > 0:
|
322 |
for img_path in image_files:
|
323 |
+
if img_path is not None:
|
324 |
try:
|
325 |
encoded_image = encode_image(img_path)
|
326 |
if encoded_image:
|
327 |
+
user_content.append({
|
328 |
"type": "image_url",
|
329 |
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
|
330 |
})
|
331 |
except Exception as e:
|
332 |
+
print(f"Error encoding image for user content: {e}")
|
333 |
|
334 |
+
if not user_content: # If message was empty and no images, or only MCP command handled
|
335 |
+
if not message.startswith("/mcp"): # Avoid yielding empty if it was an MCP command
|
336 |
+
yield "" # Or handle appropriately, maybe return if no content
|
337 |
+
return
|
|
|
|
|
|
|
|
|
338 |
|
339 |
|
|
|
|
|
340 |
augmented_system_message = system_message
|
341 |
if mcp_enabled and active_mcp_servers:
|
342 |
+
tool_desc_list = []
|
343 |
+
for server_name_active in active_mcp_servers:
|
344 |
+
if server_name_active in mcp_connections:
|
345 |
+
# Get tools for this specific server
|
346 |
+
# Assuming list_mcp_tools returns a string like "- tool1: desc1\n- tool2: desc2"
|
347 |
+
server_tools_str = list_mcp_tools(server_name_active)
|
348 |
+
if server_tools_str != "Server not connected" and server_tools_str != "No tools available for this server":
|
349 |
+
for line in server_tools_str.split('\n'):
|
350 |
+
if line.startswith("- "):
|
351 |
+
tool_desc_list.append(f"{server_name_active}.{line[2:]}") # e.g., kokoroTTS.text_to_audio_b64: Convert text...
|
352 |
|
353 |
+
if tool_desc_list:
|
354 |
+
mcp_tools_description_for_llm = "\n".join(tool_desc_list)
|
355 |
|
356 |
+
# This informs the main LLM about available tools for general conversation,
|
357 |
+
# distinct from the specialized analyzer LLM.
|
358 |
+
# The main LLM doesn't call tools directly but can use this info to guide the user.
|
359 |
if mcp_interaction_mode == "Command Mode":
|
360 |
+
augmented_system_message += f"\n\nYou have access to the following MCP tools which the user can invoke:\n{mcp_tools_description_for_llm}\n\nTo use these tools, the user can type a command in the format: /mcp <server_name> <tool_name> <arguments_json>"
|
361 |
else: # Natural Language
|
362 |
+
augmented_system_message += f"\n\nYou have access to the following MCP tools. The system will try to use them automatically if the user's request matches their capability:\n{mcp_tools_description_for_llm}\n\nIf the user asks to do something a tool can do, the system will attempt to use it. For example, if a 'text_to_audio_b64' tool is available, and the user says 'read this text aloud', the system will try to use that tool."
|
363 |
+
|
364 |
+
|
365 |
+
messages_for_llm = [{"role": "system", "content": augmented_system_message}]
|
366 |
print("Initial messages array constructed.")
|
367 |
|
368 |
+
for hist_user, hist_assistant in history:
|
369 |
+
# hist_user can be complex if it included images from MultimodalTextbox
|
370 |
+
# We need to reconstruct it properly for the LLM
|
371 |
+
current_hist_user_content = []
|
372 |
+
if isinstance(hist_user, dict) and 'text' in hist_user and 'files' in hist_user: # From MultimodalTextbox
|
373 |
+
if hist_user['text'] and hist_user['text'].strip():
|
374 |
+
current_hist_user_content.append({"type": "text", "text": hist_user['text']})
|
375 |
+
if hist_user['files']:
|
376 |
+
for img_file_path in hist_user['files']:
|
377 |
+
encoded_img = encode_image(img_file_path)
|
378 |
+
if encoded_img:
|
379 |
+
current_hist_user_content.append({
|
380 |
+
"type": "image_url",
|
381 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}
|
382 |
+
})
|
383 |
+
elif isinstance(hist_user, str): # Simple text history
|
384 |
+
current_hist_user_content.append({"type": "text", "text": hist_user})
|
385 |
|
386 |
+
if current_hist_user_content:
|
387 |
+
messages_for_llm.append({"role": "user", "content": current_hist_user_content})
|
|
|
|
|
|
|
|
|
388 |
|
389 |
+
if hist_assistant: # Assistant message is always text
|
390 |
+
# Check if assistant message was an HTML audio tag, if so, send a placeholder to LLM
|
391 |
+
if "<audio controls src=" in hist_assistant:
|
392 |
+
messages_for_llm.append({"role": "assistant", "content": "[Audio was played in response to the previous message]"})
|
393 |
+
else:
|
394 |
+
messages_for_llm.append({"role": "assistant", "content": hist_assistant})
|
395 |
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
+
messages_for_llm.append({"role": "user", "content": user_content})
|
398 |
+
print(f"Latest user message appended (content type: {type(user_content)})")
|
399 |
+
# print(f"Messages for LLM: {json.dumps(messages_for_llm, indent=2)}") # Very verbose
|
400 |
+
|
401 |
+
response_text = ""
|
402 |
+
print(f"Sending request to {provider} provider for general response.")
|
403 |
|
404 |
parameters = {
|
405 |
"max_tokens": max_tokens,
|
|
|
412 |
parameters["seed"] = seed
|
413 |
|
414 |
try:
|
415 |
+
stream = client_for_llm.chat_completion(
|
416 |
model=model_to_use,
|
417 |
+
messages=messages_for_llm,
|
418 |
stream=True,
|
419 |
**parameters
|
420 |
)
|
421 |
|
422 |
+
print("Streaming LLM response: ", end="", flush=True)
|
423 |
|
424 |
for chunk in stream:
|
425 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
426 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
427 |
token_text = chunk.choices[0].delta.content
|
428 |
if token_text:
|
429 |
+
print(token_text, end="", flush=True)
|
430 |
+
response_text += token_text
|
431 |
+
yield response_text
|
432 |
+
print() # Newline after streaming
|
|
|
433 |
except Exception as e:
|
434 |
print(f"Error during LLM inference: {e}")
|
435 |
+
response_text += f"\nError during LLM response generation: {str(e)}"
|
436 |
+
yield response_text
|
437 |
|
438 |
print("Completed LLM response generation.")
|
439 |
|
|
|
440 |
# GRADIO UI
|
441 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
442 |
chatbot = gr.Chatbot(
|
443 |
height=600,
|
444 |
show_copy_button=True,
|
445 |
+
placeholder="Select a model and begin chatting. Now supports multiple inference providers, multimodal inputs, and MCP tools",
|
446 |
layout="panel",
|
447 |
show_label=False,
|
448 |
render=False # Delay rendering
|
|
|
453 |
msg = gr.MultimodalTextbox(
|
454 |
placeholder="Type a message or upload images...",
|
455 |
show_label=False,
|
456 |
+
container=True, # Ensure it's a container for proper layout
|
457 |
scale=12,
|
458 |
file_types=["image"],
|
459 |
file_count="multiple",
|
|
|
461 |
render=False # Delay rendering
|
462 |
)
|
463 |
|
464 |
+
# Render chatbot and message box after defining them
|
465 |
chatbot.render()
|
466 |
msg.render()
|
467 |
|
468 |
with gr.Accordion("Settings", open=False):
|
469 |
system_message_box = gr.Textbox(
|
470 |
+
value="You are a helpful AI assistant that can understand images and text.",
|
471 |
placeholder="You are a helpful assistant.",
|
472 |
label="System Prompt"
|
473 |
)
|
474 |
|
475 |
with gr.Row():
|
476 |
+
with gr.Column():
|
477 |
+
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
478 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
479 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
480 |
+
with gr.Column():
|
481 |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
482 |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
483 |
|
484 |
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
485 |
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
|
486 |
+
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. If empty, only 'hf-inference' provider can be used with the default token.", placeholder="Enter your Hugging Face API token", type="password")
|
487 |
+
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a Hugging Face model path. Overrides selected featured model.", placeholder="meta-llama/Llama-3.1-70B-Instruct")
|
488 |
+
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
|
|
|
489 |
|
490 |
models_list = [
|
491 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.1-405B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct",
|
492 |
+
"meta-llama/Llama-3-70B-Instruct", "meta-llama/Llama-3-8B-Instruct",
|
493 |
+
"NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
494 |
+
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mistral-7B-Instruct-v0.2",
|
495 |
+
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2-72B-Instruct", "Qwen/Qwen2-57B-A14B-Instruct", "Qwen/Qwen1.5-110B-Chat",
|
496 |
+
"microsoft/Phi-3-medium-128k-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-small-128k-instruct",
|
497 |
+
"google/gemma-2-27b-it", "google/gemma-2-9b-it",
|
498 |
"CohereForAI/c4ai-command-r-plus",
|
499 |
+
"deepseek-ai/DeepSeek-V2-Chat",
|
500 |
+
"Snowflake/snowflake-arctic-instruct"
|
501 |
+
] # Keeping your original list, just formatted for readability
|
502 |
+
featured_model_radio = gr.Radio(label="Select a featured model", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
|
503 |
+
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
|
505 |
with gr.Accordion("MCP Settings", open=False):
|
506 |
+
mcp_enabled_checkbox = gr.Checkbox(label="Enable MCP Support", value=False, info="Enable Model Context Protocol support for external tools")
|
507 |
with gr.Row():
|
508 |
+
mcp_server_url = gr.Textbox(label="MCP Server URL", placeholder="https://your-mcp-server.hf.space/gradio_api/mcp/sse")
|
509 |
+
mcp_server_name = gr.Textbox(label="Server Name (Optional)", placeholder="e.g., kokoroTTS")
|
510 |
mcp_connect_button = gr.Button("Connect to MCP Server")
|
|
|
511 |
mcp_status = gr.Textbox(label="MCP Connection Status", placeholder="No MCP servers connected", interactive=False)
|
512 |
+
active_mcp_servers = gr.Dropdown(label="Active MCP Servers for Chat", choices=[], multiselect=True, info="Select which connected MCP servers to use")
|
513 |
+
mcp_mode = gr.Radio(label="MCP Interaction Mode", choices=["Natural Language", "Command Mode"], value="Natural Language", info="How to trigger MCP tools")
|
|
|
514 |
gr.Markdown("""
|
515 |
+
### MCP Interaction Modes
|
516 |
+
**Natural Language**: Describe what you want. E.g., "Convert 'Hello' to speech".
|
517 |
+
**Command Mode**: Use `/mcp <server_name> <tool_name> {"param": "value"}`. E.g., `/mcp kokoroTTS text_to_audio_b64 {"text": "Hello world"}`.
|
|
|
|
|
|
|
|
|
|
|
518 |
""")
|
519 |
|
520 |
+
chat_history_state = gr.State([]) # To store the actual history for the LLM
|
521 |
+
|
522 |
+
def filter_models_choices(search_term):
|
|
|
|
|
523 |
print(f"Filtering models with search term: {search_term}")
|
524 |
+
if not search_term: return gr.update(choices=models_list)
|
525 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
|
|
|
|
526 |
print(f"Filtered models: {filtered}")
|
527 |
+
return gr.update(choices=filtered if filtered else models_list, value=featured_model_radio.value if featured_model_radio.value in filtered else (filtered[0] if filtered else models_list[0]))
|
528 |
|
529 |
+
def update_custom_model_from_radio(selected_featured_model):
|
530 |
print(f"Featured model selected: {selected_featured_model}")
|
531 |
+
# This function now updates the custom_model_box.
|
532 |
+
# If you want the radio selection to BE the model_to_use unless custom_model_box has text,
|
533 |
+
# then custom_model_box should be cleared or its value used as override.
|
534 |
+
# For now, let's assume custom_model_box is an override.
|
535 |
+
# If you want the radio to directly feed into the selected_model parameter for respond(),
|
536 |
+
# then this function might not be needed or custom_model_box should be used as an override.
|
537 |
+
return selected_featured_model # This updates the custom_model_box with the radio selection.
|
538 |
+
|
539 |
+
def handle_connect_mcp_server(url, name_suggestion):
|
540 |
+
actual_name, status_msg = connect_to_mcp_server(url, name_suggestion)
|
541 |
+
all_server_names = list(mcp_connections.keys())
|
542 |
+
# Keep existing selections if possible
|
543 |
current_selection = active_mcp_servers.value if active_mcp_servers.value else []
|
544 |
+
new_selection = [s for s in current_selection if s in all_server_names]
|
545 |
+
if actual_name and actual_name not in new_selection : # Auto-select newly connected server
|
546 |
+
new_selection.append(actual_name)
|
547 |
+
return status_msg, gr.update(choices=all_server_names, value=new_selection)
|
548 |
+
|
549 |
+
# This function is called when the user submits a message.
|
550 |
+
# It updates the visual chatbot history and prepares the state for the bot.
|
551 |
+
def handle_user_message(user_input_dict, current_chat_history_state):
|
552 |
+
text_content = user_input_dict.get("text", "").strip()
|
553 |
+
files = user_input_dict.get("files", []) # List of file paths
|
554 |
+
|
555 |
+
# Add to visual history (chatbot component)
|
556 |
+
visual_history_additions = []
|
557 |
|
558 |
+
# Store for LLM (chat_history_state)
|
559 |
+
# We store the raw dict from MultimodalTextbox for user messages
|
560 |
+
# to correctly reconstruct for the LLM later.
|
561 |
+
current_chat_history_state.append([user_input_dict, None])
|
|
|
|
|
|
|
562 |
|
563 |
+
# For visual chatbot, create separate entries for text and images
|
564 |
+
if text_content:
|
565 |
+
visual_history_additions.append([text_content, None])
|
566 |
if files:
|
|
|
567 |
for file_path in files:
|
568 |
+
visual_history_additions.append([ (file_path,), None]) # Gradio Chatbot expects tuple for files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
|
570 |
+
return visual_history_additions, current_chat_history_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
|
572 |
|
573 |
+
# This function is called after user message is processed.
|
574 |
+
# It calls the LLM and streams the response.
|
575 |
+
def handle_bot_response(
|
576 |
+
current_chat_history_state, # This is the state with the latest user message
|
577 |
+
sys_msg, max_tok, temp, top_p_val, freq_pen, seed_val, prov, api_key_val, cust_model,
|
578 |
+
search, selected_feat_model, mcp_on, active_servs, mcp_interact_mode
|
579 |
+
):
|
580 |
+
if not current_chat_history_state or current_chat_history_state[-1][1] is not None:
|
581 |
+
# User message not yet added or bot already responded
|
582 |
+
yield current_chat_history_state # Or some empty update
|
583 |
return
|
584 |
|
585 |
+
# The user message is the first element of the last item in chat_history_state
|
586 |
+
# It's a dict: {'text': '...', 'files': ['path1', ...]}
|
587 |
+
user_message_dict = current_chat_history_state[-1][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
588 |
|
589 |
+
text_from_user_dict = user_message_dict.get("text", "")
|
590 |
+
files_from_user_dict = user_message_dict.get("files", [])
|
591 |
+
|
592 |
+
# History for LLM should exclude the current un-responded user message
|
593 |
+
history_for_llm = current_chat_history_state[:-1]
|
594 |
+
|
595 |
+
# Stream response from LLM
|
596 |
+
full_response = ""
|
597 |
+
for R in respond(
|
598 |
+
message=text_from_user_dict,
|
599 |
+
image_files=files_from_user_dict,
|
600 |
+
history=history_for_llm, # Pass history BEFORE current turn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
system_message=sys_msg,
|
602 |
max_tokens=max_tok,
|
603 |
temperature=temp,
|
|
|
607 |
provider=prov,
|
608 |
custom_api_key=api_key_val,
|
609 |
custom_model=cust_model,
|
610 |
+
model_search_term=search, # This might be redundant if featured_model_radio directly updates custom_model_box
|
611 |
+
selected_model=selected_feat_model, # This is the value from the radio
|
612 |
mcp_enabled=mcp_on,
|
613 |
active_mcp_servers=active_servs,
|
614 |
+
mcp_interaction_mode=mcp_interact_mode
|
615 |
+
):
|
616 |
+
full_response = R
|
617 |
+
# Update the last item in chat_history_state with bot's response
|
618 |
+
current_chat_history_state[-1][1] = full_response
|
619 |
+
|
620 |
+
# Update visual chatbot
|
621 |
+
# Need to reconstruct visual history from state
|
622 |
+
visual_history_update = []
|
623 |
+
for user_turn, bot_turn in current_chat_history_state:
|
624 |
+
# User turn processing
|
625 |
+
user_text_viz = user_turn.get("text", "")
|
626 |
+
user_files_viz = user_turn.get("files", [])
|
627 |
+
if user_text_viz:
|
628 |
+
visual_history_update.append([user_text_viz, None if bot_turn is None and user_turn == current_chat_history_state[-1][0] else bot_turn]) # Add text part
|
629 |
+
for f_path in user_files_viz:
|
630 |
+
visual_history_update.append([(f_path,), None if bot_turn is None and user_turn == current_chat_history_state[-1][0] else bot_turn]) # Add image part
|
631 |
+
# Bot turn processing if user turn was only text and no files
|
632 |
+
if not user_text_viz and not user_files_viz and user_text_viz == "" : # Should not happen with current logic
|
633 |
+
visual_history_update.append(["", bot_turn])
|
634 |
+
elif not user_files_viz and user_text_viz and bot_turn is not None and visual_history_update[-1][0] == user_text_viz :
|
635 |
+
visual_history_update[-1][1] = bot_turn # Assign bot response to the text part
|
636 |
+
|
637 |
+
yield visual_history_update, current_chat_history_state
|
638 |
|
|
|
|
|
639 |
|
640 |
+
# Event handlers
|
641 |
msg.submit(
|
642 |
+
handle_user_message,
|
643 |
+
[msg, chat_history_state],
|
644 |
+
[chatbot, chat_history_state], # Update visual chatbot and state
|
645 |
+
queue=True # Use queue for streaming
|
646 |
).then(
|
647 |
+
handle_bot_response,
|
648 |
+
[chat_history_state, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
649 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
650 |
model_search_box, featured_model_radio, mcp_enabled_checkbox, active_mcp_servers, mcp_mode],
|
651 |
+
[chatbot, chat_history_state] # Update visual chatbot and state again with bot response
|
652 |
).then(
|
653 |
+
lambda: gr.update(value={"text": "", "files": []}), # Clear MultimodalTextbox
|
654 |
None,
|
655 |
+
[msg],
|
656 |
+
queue=False # No queue for simple UI update
|
657 |
)
|
658 |
|
659 |
mcp_connect_button.click(
|
660 |
+
handle_connect_mcp_server,
|
661 |
[mcp_server_url, mcp_server_name],
|
662 |
[mcp_status, active_mcp_servers]
|
663 |
)
|
664 |
|
665 |
+
model_search_box.change(fn=filter_models_choices, inputs=model_search_box, outputs=featured_model_radio)
|
666 |
+
# Let radio button directly be the selected_model, custom_model_box is an override
|
667 |
+
# featured_model_radio.change(fn=update_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
|
668 |
+
|
669 |
+
|
670 |
+
def validate_provider_choice(api_key_val, current_provider_val):
|
671 |
+
if not api_key_val.strip() and current_provider_val != "hf-inference":
|
672 |
+
gr.Info("No custom API key provided. Only 'hf-inference' provider can be used. Switching to 'hf-inference'.")
|
673 |
+
return gr.update(value="hf-inference")
|
674 |
+
return gr.update() # No change needed if valid or key provided
|
675 |
|
676 |
+
byok_textbox.change(fn=validate_provider_choice, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
677 |
+
provider_radio.change(fn=validate_provider_choice, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
678 |
|
679 |
print("Gradio interface initialized.")
|
680 |
|
681 |
if __name__ == "__main__":
|
682 |
print("Launching the demo application.")
|
683 |
+
demo.queue().launch(show_api=False, mcp_server=False, share=os.environ.get("GRADIO_SHARE", "").lower() == "true")
|