File size: 7,616 Bytes
956ea73
 
 
 
 
70091e0
 
 
 
 
 
 
 
 
 
 
956ea73
70091e0
 
 
 
 
 
956ea73
70091e0
956ea73
 
 
 
70091e0
 
 
956ea73
 
 
 
 
 
 
 
 
 
70091e0
 
956ea73
70091e0
 
 
956ea73
70091e0
956ea73
 
70091e0
956ea73
70091e0
 
 
956ea73
 
 
 
 
70091e0
 
956ea73
 
 
 
70091e0
956ea73
70091e0
956ea73
 
 
 
 
 
 
 
 
70091e0
 
956ea73
 
 
 
 
70091e0
956ea73
 
 
 
 
 
 
 
 
 
 
 
70091e0
956ea73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70091e0
956ea73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70091e0
 
956ea73
 
70091e0
 
956ea73
70091e0
 
956ea73
70091e0
 
 
 
956ea73
70091e0
 
 
 
 
956ea73
70091e0
 
 
956ea73
70091e0
956ea73
70091e0
956ea73
70091e0
 
 
956ea73
70091e0
956ea73
70091e0
 
 
 
956ea73
70091e0
 
956ea73
70091e0
 
 
956ea73
70091e0
 
956ea73
 
70091e0
956ea73
 
 
 
 
 
70091e0
956ea73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
app.py – Hugging Face Space
Swaps Anthropic for HF Serverless Inference (Qwen3-235B-A22B)
"""

import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack

import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from dotenv import load_dotenv
from huggingface_hub import InferenceClient   # NEW ✨

load_dotenv()

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)


class MCPClientWrapper:
    """
    Wraps an MCP stdio client + a chat LLM (Qwen3-235B-A22B via HF Serverless).
    """

    def __init__(self):
        self.session = None
        self.exit_stack = None
        self.tools: List[Dict[str, Any]] = []

        # --- NEW: Hugging Face client ---------------------------------------
        self.hf_client = InferenceClient(
            model="Qwen/Qwen3-235B-A22B",
            token=os.getenv("HUGGINGFACE_API_TOKEN")
        )
        # --------------------------------------------------------------------

    # ─────────────────────────── MCP CONNECTION ────────────────────────────
    def connect(self, server_path: str) -> str:
        return loop.run_until_complete(self._connect(server_path))

    async def _connect(self, server_path: str) -> str:
        if self.exit_stack:
            await self.exit_stack.aclose()

        self.exit_stack = AsyncExitStack()

        is_python = server_path.endswith(".py")
        command = "python" if is_python else "node"

        server_params = StdioServerParameters(
            command=command,
            args=[server_path],
            env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"},
        )

        stdio_transport = await self.exit_stack.enter_async_context(
            stdio_client(server_params)
        )
        self.stdio, self.write = stdio_transport

        self.session = await self.exit_stack.enter_async_context(
            ClientSession(self.stdio, self.write)
        )
        await self.session.initialize()

        response = await self.session.list_tools()
        self.tools = [
            {
                "name": tool.name,
                "description": tool.description,
                "input_schema": tool.inputSchema,
            }
            for tool in response.tools
        ]

        tool_names = [tool["name"] for tool in self.tools]
        return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"

    # ──────────────────────────── CHAT HANDLER ─────────────────────────────
    def process_message(
        self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]
    ) -> tuple:
        if not self.session:
            return (
                history
                + [
                    {"role": "user", "content": message},
                    {
                        "role": "assistant",
                        "content": "Please connect to an MCP server first.",
                    },
                ],
                gr.Textbox(value=""),
            )

        new_messages = loop.run_until_complete(self._process_query(message, history))
        return (
            history + [{"role": "user", "content": message}] + new_messages,
            gr.Textbox(value=""),
        )

    # ────────────────────────── INTERNAL LLM CALL ─────────────────────────
    async def _process_query(
        self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]
    ):
        """
        Pushes the whole chat history to Qwen3-235B-A22B and returns its reply.
        Tool calls are *not* forwarded – the HF endpoint only returns text.
        """
        # 1️⃣ Build message list in OpenAI-style dicts
        messages: List[Dict[str, str]] = []
        for item in history:
            if isinstance(item, ChatMessage):
                role, content = item.role, item.content
            else:
                role, content = item.get("role"), item.get("content")

            if role in {"user", "assistant", "system"}:
                messages.append({"role": role, "content": content})
        messages.append({"role": "user", "content": message})

        # 2️⃣ Serialise to Qwen chat-markup
        prompt_parts = []
        for m in messages:
            role = m["role"]
            prompt_parts.append(f"<|im_start|>{role}\n{m['content']}<|im_end|>")
        prompt_parts.append("<|im_start|>assistant")  # model will complete here
        prompt = "\n".join(prompt_parts)

        # 3️⃣ Call HF Serverless in a threadpool (non-blocking)
        async def _generate():
            return self.hf_client.text_generation(
                prompt,
                max_new_tokens=1024,
                temperature=0.7,
                stop_sequences=["<|im_end|>", "<|im_start|>"],
            )

        assistant_text: str = await asyncio.get_running_loop().run_in_executor(
            None, _generate
        )

        # 4️⃣ Return in Gradio-friendly format
        return [{"role": "assistant", "content": assistant_text.strip()}]


# ──────────────────────────── GRADIO UI ───────────────────────────────────
client = MCPClientWrapper()


def gradio_interface():
    with gr.Blocks(title="MCP Weather Client") as demo:
        gr.Markdown("# MCP Weather Assistant")
        gr.Markdown("Connect to your MCP weather server and chat with the assistant")

        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                server_path = gr.Textbox(
                    label="Server Script Path",
                    placeholder="Enter path to server script (e.g., weather.py)",
                    value="gradio_mcp_server.py",
                )
            with gr.Column(scale=1):
                connect_btn = gr.Button("Connect")

        status = gr.Textbox(label="Connection Status", interactive=False)

        chatbot = gr.Chatbot(
            value=[],
            height=500,
            type="messages",
            show_copy_button=True,
            avatar_images=("πŸ‘€", "πŸ€–"),
        )

        with gr.Row(equal_height=True):
            msg = gr.Textbox(
                label="Your Question",
                placeholder="Ask about weather or alerts (e.g., What's the weather in New York?)",
                scale=4,
            )
            clear_btn = gr.Button("Clear Chat", scale=1)

        connect_btn.click(client.connect, inputs=server_path, outputs=status)
        msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
        clear_btn.click(lambda: [], None, chatbot)

    return demo


# ──────────────────────────── ENTRY POINT ────────────────────────────────
if __name__ == "__main__":
    if not os.getenv("HUGGINGFACE_API_TOKEN"):
        print(
            "Warning: HUGGINGFACE_API_TOKEN not found in environment. "
            "Set it in your .env file or Space secrets."
        )

    interface = gradio_interface()
    interface.launch(debug=True)  # ← typo fixed