Vertex / app /api_helpers.py
bibibi12345's picture
removed debugging logs
df1784a
import json
import time
import math
import asyncio
import base64
from typing import List, Dict, Any, Callable, Union, Optional
from fastapi.responses import JSONResponse, StreamingResponse
from google.auth.transport.requests import Request as AuthRequest
from google.genai import types
from google.genai.types import HttpOptions
from google import genai # Original import
from openai import AsyncOpenAI
from models import OpenAIRequest, OpenAIMessage
from message_processing import (
deobfuscate_text,
convert_to_openai_format,
convert_chunk_to_openai,
create_final_chunk,
parse_gemini_response_for_reasoning_and_content, # Added import
extract_reasoning_by_tags # Added for new OpenAI direct reasoning logic
)
import config as app_config
from config import VERTEX_REASONING_TAG
class StreamingReasoningProcessor:
"""Stateful processor for extracting reasoning from streaming content with tags."""
def __init__(self, tag_name: str = VERTEX_REASONING_TAG):
self.tag_name = tag_name
self.open_tag = f"<{tag_name}>"
self.close_tag = f"</{tag_name}>"
self.tag_buffer = ""
self.inside_tag = False
self.reasoning_buffer = ""
self.partial_tag_buffer = "" # Buffer for potential partial tags
def process_chunk(self, content: str) -> tuple[str, str]:
"""
Process a chunk of streaming content.
Args:
content: New content from the stream
Returns:
A tuple of:
- processed_content: Content with reasoning tags removed
- current_reasoning: Reasoning text found in this chunk (partial or complete)
"""
# Add new content to buffer, but also handle any partial tag from before
if self.partial_tag_buffer:
# We had a partial tag from the previous chunk
content = self.partial_tag_buffer + content
self.partial_tag_buffer = ""
self.tag_buffer += content
processed_content = ""
current_reasoning = ""
while self.tag_buffer:
if not self.inside_tag:
# Look for opening tag
open_pos = self.tag_buffer.find(self.open_tag)
if open_pos == -1:
# No complete opening tag found
# Check if we might have a partial tag at the end
partial_match = False
for i in range(1, min(len(self.open_tag), len(self.tag_buffer) + 1)):
if self.tag_buffer[-i:] == self.open_tag[:i]:
partial_match = True
# Output everything except the potential partial tag
if len(self.tag_buffer) > i:
processed_content += self.tag_buffer[:-i]
self.partial_tag_buffer = self.tag_buffer[-i:]
self.tag_buffer = ""
else:
# Entire buffer is partial tag
self.partial_tag_buffer = self.tag_buffer
self.tag_buffer = ""
break
if not partial_match:
# No partial tag, output everything
processed_content += self.tag_buffer
self.tag_buffer = ""
break
else:
# Found opening tag
processed_content += self.tag_buffer[:open_pos]
self.tag_buffer = self.tag_buffer[open_pos + len(self.open_tag):]
self.inside_tag = True
else:
# Inside tag, look for closing tag
close_pos = self.tag_buffer.find(self.close_tag)
if close_pos == -1:
# No complete closing tag yet
# Check for partial closing tag
partial_match = False
for i in range(1, min(len(self.close_tag), len(self.tag_buffer) + 1)):
if self.tag_buffer[-i:] == self.close_tag[:i]:
partial_match = True
# Add everything except potential partial tag to reasoning
if len(self.tag_buffer) > i:
new_reasoning = self.tag_buffer[:-i]
self.reasoning_buffer += new_reasoning
if new_reasoning: # Stream reasoning as it arrives
current_reasoning = new_reasoning
self.partial_tag_buffer = self.tag_buffer[-i:]
self.tag_buffer = ""
else:
# Entire buffer is partial tag
self.partial_tag_buffer = self.tag_buffer
self.tag_buffer = ""
break
if not partial_match:
# No partial tag, add all to reasoning and stream it
if self.tag_buffer:
self.reasoning_buffer += self.tag_buffer
current_reasoning = self.tag_buffer
self.tag_buffer = ""
break
else:
# Found closing tag
final_reasoning_chunk = self.tag_buffer[:close_pos]
self.reasoning_buffer += final_reasoning_chunk
if final_reasoning_chunk: # Include the last chunk of reasoning
current_reasoning = final_reasoning_chunk
self.reasoning_buffer = "" # Clear buffer after complete tag
self.tag_buffer = self.tag_buffer[close_pos + len(self.close_tag):]
self.inside_tag = False
return processed_content, current_reasoning
def flush_remaining(self) -> tuple[str, str]:
"""
Flush any remaining content in the buffer when the stream ends.
Returns:
A tuple of:
- remaining_content: Any content that was buffered but not yet output
- remaining_reasoning: Any incomplete reasoning if we were inside a tag
"""
remaining_content = ""
remaining_reasoning = ""
# First handle any partial tag buffer
if self.partial_tag_buffer:
# The partial tag wasn't completed, so treat it as regular content
remaining_content += self.partial_tag_buffer
self.partial_tag_buffer = ""
if not self.inside_tag:
# If we're not inside a tag, output any remaining buffer
if self.tag_buffer:
remaining_content += self.tag_buffer
self.tag_buffer = ""
else:
# If we're inside a tag when stream ends, we have incomplete reasoning
# First, yield any reasoning we've accumulated
if self.reasoning_buffer:
remaining_reasoning = self.reasoning_buffer
self.reasoning_buffer = ""
# Then output the remaining buffer as content (it's an incomplete tag)
if self.tag_buffer:
# Don't include the opening tag in output - just the buffer content
remaining_content += self.tag_buffer
self.tag_buffer = ""
self.inside_tag = False
return remaining_content, remaining_reasoning
def process_streaming_content_with_reasoning_tags(
content: str,
tag_buffer: str,
inside_tag: bool,
reasoning_buffer: str,
tag_name: str = VERTEX_REASONING_TAG
) -> tuple[str, str, bool, str, str]:
"""
Process streaming content to extract reasoning within tags.
This is a compatibility wrapper for the stateful function. Consider using
StreamingReasoningProcessor class directly for cleaner code.
Args:
content: New content from the stream
tag_buffer: Existing buffer for handling tags split across chunks
inside_tag: Whether we're currently inside a reasoning tag
reasoning_buffer: Buffer for accumulating reasoning content
tag_name: The tag name to look for (defaults to VERTEX_REASONING_TAG)
Returns:
A tuple of:
- processed_content: Content with reasoning tags removed
- current_reasoning: Complete reasoning text if a closing tag was found
- inside_tag: Updated state of whether we're inside a tag
- reasoning_buffer: Updated reasoning buffer
- tag_buffer: Updated tag buffer
"""
# Create a temporary processor with the current state
processor = StreamingReasoningProcessor(tag_name)
processor.tag_buffer = tag_buffer
processor.inside_tag = inside_tag
processor.reasoning_buffer = reasoning_buffer
# Process the chunk
processed_content, current_reasoning = processor.process_chunk(content)
# Return the updated state
return (processed_content, current_reasoning, processor.inside_tag,
processor.reasoning_buffer, processor.tag_buffer)
def create_openai_error_response(status_code: int, message: str, error_type: str) -> Dict[str, Any]:
return {
"error": {
"message": message,
"type": error_type,
"code": status_code,
"param": None,
}
}
def create_generation_config(request: OpenAIRequest) -> Dict[str, Any]:
config = {}
if request.temperature is not None: config["temperature"] = request.temperature
if request.max_tokens is not None: config["max_output_tokens"] = request.max_tokens
if request.top_p is not None: config["top_p"] = request.top_p
if request.top_k is not None: config["top_k"] = request.top_k
if request.stop is not None: config["stop_sequences"] = request.stop
if request.seed is not None: config["seed"] = request.seed
if request.presence_penalty is not None: config["presence_penalty"] = request.presence_penalty
if request.frequency_penalty is not None: config["frequency_penalty"] = request.frequency_penalty
if request.n is not None: config["candidate_count"] = request.n
config["safety_settings"] = [
types.SafetySetting(category="HARM_CATEGORY_HATE_SPEECH", threshold="OFF"),
types.SafetySetting(category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold="OFF"),
types.SafetySetting(category="HARM_CATEGORY_SEXUALLY_EXPLICIT", threshold="OFF"),
types.SafetySetting(category="HARM_CATEGORY_HARASSMENT", threshold="OFF"),
types.SafetySetting(category="HARM_CATEGORY_CIVIC_INTEGRITY", threshold="OFF")
]
return config
def is_gemini_response_valid(response: Any) -> bool:
if response is None: return False
if hasattr(response, 'text') and isinstance(response.text, str) and response.text.strip(): return True
if hasattr(response, 'candidates') and response.candidates:
for candidate in response.candidates:
if hasattr(candidate, 'text') and isinstance(candidate.text, str) and candidate.text.strip(): return True
if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
for part_item in candidate.content.parts:
if hasattr(part_item, 'text') and isinstance(part_item.text, str) and part_item.text.strip(): return True
return False
async def _base_fake_stream_engine(
api_call_task_creator: Callable[[], asyncio.Task],
extract_text_from_response_func: Callable[[Any], str],
response_id: str,
sse_model_name: str,
is_auto_attempt: bool,
is_valid_response_func: Callable[[Any], bool],
keep_alive_interval_seconds: float,
process_text_func: Optional[Callable[[str, str], str]] = None,
check_block_reason_func: Optional[Callable[[Any], None]] = None,
reasoning_text_to_yield: Optional[str] = None,
actual_content_text_to_yield: Optional[str] = None
):
api_call_task = api_call_task_creator()
if keep_alive_interval_seconds > 0:
while not api_call_task.done():
keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{"delta": {"reasoning_content": ""}, "index": 0, "finish_reason": None}]}
yield f"data: {json.dumps(keep_alive_data)}\n\n"
await asyncio.sleep(keep_alive_interval_seconds)
try:
full_api_response = await api_call_task
if check_block_reason_func:
check_block_reason_func(full_api_response)
if not is_valid_response_func(full_api_response):
raise ValueError(f"Invalid/empty API response in fake stream for model {sse_model_name}: {str(full_api_response)[:200]}")
final_reasoning_text = reasoning_text_to_yield
final_actual_content_text = actual_content_text_to_yield
if final_reasoning_text is None and final_actual_content_text is None:
extracted_full_text = extract_text_from_response_func(full_api_response)
if process_text_func:
final_actual_content_text = process_text_func(extracted_full_text, sse_model_name)
else:
final_actual_content_text = extracted_full_text
else:
if process_text_func:
if final_reasoning_text is not None:
final_reasoning_text = process_text_func(final_reasoning_text, sse_model_name)
if final_actual_content_text is not None:
final_actual_content_text = process_text_func(final_actual_content_text, sse_model_name)
if final_reasoning_text:
reasoning_delta_data = {
"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()),
"model": sse_model_name, "choices": [{"index": 0, "delta": {"reasoning_content": final_reasoning_text}, "finish_reason": None}]
}
yield f"data: {json.dumps(reasoning_delta_data)}\n\n"
if final_actual_content_text:
await asyncio.sleep(0.05)
content_to_chunk = final_actual_content_text or ""
chunk_size = max(20, math.ceil(len(content_to_chunk) / 10)) if content_to_chunk else 0
if not content_to_chunk and content_to_chunk != "":
empty_delta_data = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{"index": 0, "delta": {"content": ""}, "finish_reason": None}]}
yield f"data: {json.dumps(empty_delta_data)}\n\n"
else:
for i in range(0, len(content_to_chunk), chunk_size):
chunk_text = content_to_chunk[i:i+chunk_size]
content_delta_data = {"id": response_id, "object": "chat.completion.chunk", "created": int(time.time()), "model": sse_model_name, "choices": [{"index": 0, "delta": {"content": chunk_text}, "finish_reason": None}]}
yield f"data: {json.dumps(content_delta_data)}\n\n"
if len(content_to_chunk) > chunk_size: await asyncio.sleep(0.05)
yield create_final_chunk(sse_model_name, response_id)
yield "data: [DONE]\n\n"
except Exception as e:
err_msg_detail = f"Error in _base_fake_stream_engine (model: '{sse_model_name}'): {type(e).__name__} - {str(e)}"
print(f"ERROR: {err_msg_detail}")
sse_err_msg_display = str(e)
if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
err_resp_for_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
json_payload_for_fake_stream_error = json.dumps(err_resp_for_sse)
if not is_auto_attempt:
yield f"data: {json_payload_for_fake_stream_error}\n\n"
yield "data: [DONE]\n\n"
raise
async def gemini_fake_stream_generator( # Changed to async
gemini_client_instance: Any,
model_for_api_call: str,
prompt_for_api_call: Union[types.Content, List[types.Content]],
gen_config_for_api_call: Dict[str, Any],
request_obj: OpenAIRequest,
is_auto_attempt: bool
):
model_name_for_log = getattr(gemini_client_instance, 'model_name', 'unknown_gemini_model_object')
print(f"FAKE STREAMING (Gemini): Prep for '{request_obj.model}' (API model string: '{model_for_api_call}', client obj: '{model_name_for_log}') with reasoning separation.")
response_id = f"chatcmpl-{int(time.time())}"
# 1. Create and await the API call task
api_call_task = asyncio.create_task(
gemini_client_instance.aio.models.generate_content(
model=model_for_api_call,
contents=prompt_for_api_call,
config=gen_config_for_api_call
)
)
# Keep-alive loop while the main API call is in progress
outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
if outer_keep_alive_interval > 0:
while not api_call_task.done():
keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"reasoning_content": ""}, "index": 0, "finish_reason": None}]}
yield f"data: {json.dumps(keep_alive_data)}\n\n"
await asyncio.sleep(outer_keep_alive_interval)
try:
raw_response = await api_call_task # Get the full Gemini response
# 2. Parse the response for reasoning and content using the centralized parser
separated_reasoning_text = ""
separated_actual_content_text = ""
if hasattr(raw_response, 'candidates') and raw_response.candidates:
# Typically, fake streaming would focus on the first candidate
separated_reasoning_text, separated_actual_content_text = parse_gemini_response_for_reasoning_and_content(raw_response.candidates[0])
elif hasattr(raw_response, 'text') and raw_response.text is not None: # Fallback for simpler response structures
separated_actual_content_text = raw_response.text
# 3. Define a text processing function (e.g., for deobfuscation)
def _process_gemini_text_if_needed(text: str, model_name: str) -> str:
if model_name.endswith("-encrypt-full"):
return deobfuscate_text(text)
return text
final_reasoning_text = _process_gemini_text_if_needed(separated_reasoning_text, request_obj.model)
final_actual_content_text = _process_gemini_text_if_needed(separated_actual_content_text, request_obj.model)
# Define block checking for the raw response
def _check_gemini_block_wrapper(response_to_check: Any):
if hasattr(response_to_check, 'prompt_feedback') and hasattr(response_to_check.prompt_feedback, 'block_reason') and response_to_check.prompt_feedback.block_reason:
block_message = f"Response blocked by Gemini safety filter: {response_to_check.prompt_feedback.block_reason}"
if hasattr(response_to_check.prompt_feedback, 'block_reason_message') and response_to_check.prompt_feedback.block_reason_message:
block_message += f" (Message: {response_to_check.prompt_feedback.block_reason_message})"
raise ValueError(block_message)
# Call _base_fake_stream_engine with pre-split and processed texts
async for chunk in _base_fake_stream_engine(
api_call_task_creator=lambda: asyncio.create_task(asyncio.sleep(0, result=raw_response)), # Dummy task
extract_text_from_response_func=lambda r: "", # Not directly used as text is pre-split
is_valid_response_func=is_gemini_response_valid, # Validates raw_response
check_block_reason_func=_check_gemini_block_wrapper, # Checks raw_response
process_text_func=None, # Text processing already done above
response_id=response_id,
sse_model_name=request_obj.model,
keep_alive_interval_seconds=0, # Keep-alive for this inner call is 0
is_auto_attempt=is_auto_attempt,
reasoning_text_to_yield=final_reasoning_text,
actual_content_text_to_yield=final_actual_content_text
):
yield chunk
except Exception as e_outer_gemini:
err_msg_detail = f"Error in gemini_fake_stream_generator (model: '{request_obj.model}'): {type(e_outer_gemini).__name__} - {str(e_outer_gemini)}"
print(f"ERROR: {err_msg_detail}")
sse_err_msg_display = str(e_outer_gemini)
if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
json_payload_error = json.dumps(err_resp_sse)
if not is_auto_attempt:
yield f"data: {json_payload_error}\n\n"
yield "data: [DONE]\n\n"
# Consider re-raising if auto-mode needs to catch this: raise e_outer_gemini
async def openai_fake_stream_generator( # Reverted signature: removed thought_tag_marker
openai_client: AsyncOpenAI,
openai_params: Dict[str, Any],
openai_extra_body: Dict[str, Any],
request_obj: OpenAIRequest,
is_auto_attempt: bool
# Removed thought_tag_marker as parsing uses a fixed tag now
# Removed gcp_credentials, gcp_project_id, gcp_location, base_model_id_for_tokenizer previously
):
api_model_name = openai_params.get("model", "unknown-openai-model")
print(f"FAKE STREAMING (OpenAI): Prep for '{request_obj.model}' (API model: '{api_model_name}') with reasoning split.")
response_id = f"chatcmpl-{int(time.time())}"
async def _openai_api_call_and_split_task_creator_wrapper():
params_for_non_stream_call = openai_params.copy()
params_for_non_stream_call['stream'] = False
# Use the already configured extra_body which includes the thought_tag_marker
_api_call_task = asyncio.create_task(
openai_client.chat.completions.create(**params_for_non_stream_call, extra_body=openai_extra_body)
)
raw_response = await _api_call_task
full_content_from_api = ""
if raw_response.choices and raw_response.choices[0].message and raw_response.choices[0].message.content is not None:
full_content_from_api = raw_response.choices[0].message.content
vertex_completion_tokens = 0
if raw_response.usage and raw_response.usage.completion_tokens is not None:
vertex_completion_tokens = raw_response.usage.completion_tokens
# --- Start Inserted Block (Tag-based reasoning extraction) ---
reasoning_text = ""
# Ensure actual_content_text is a string even if API returns None
actual_content_text = full_content_from_api if isinstance(full_content_from_api, str) else ""
if actual_content_text: # Check if content exists
print(f"INFO: OpenAI Direct Fake-Streaming - Applying tag extraction with fixed marker: '{VERTEX_REASONING_TAG}'")
# Unconditionally attempt extraction with the fixed tag
reasoning_text, actual_content_text = extract_reasoning_by_tags(actual_content_text, VERTEX_REASONING_TAG)
# if reasoning_text:
# print(f"DEBUG: Tag extraction success (fixed tag). Reasoning len: {len(reasoning_text)}, Content len: {len(actual_content_text)}")
# else:
# print(f"DEBUG: No content found within fixed tag '{VERTEX_REASONING_TAG}'.")
else:
print(f"WARNING: OpenAI Direct Fake-Streaming - No initial content found in message.")
actual_content_text = "" # Ensure empty string
# --- End Revised Block ---
# The return uses the potentially modified variables:
return raw_response, reasoning_text, actual_content_text
temp_task_for_keepalive_check = asyncio.create_task(_openai_api_call_and_split_task_creator_wrapper())
outer_keep_alive_interval = app_config.FAKE_STREAMING_INTERVAL_SECONDS
if outer_keep_alive_interval > 0:
while not temp_task_for_keepalive_check.done():
keep_alive_data = {"id": "chatcmpl-keepalive", "object": "chat.completion.chunk", "created": int(time.time()), "model": request_obj.model, "choices": [{"delta": {"content": ""}, "index": 0, "finish_reason": None}]}
yield f"data: {json.dumps(keep_alive_data)}\n\n"
await asyncio.sleep(outer_keep_alive_interval)
try:
full_api_response, separated_reasoning_text, separated_actual_content_text = await temp_task_for_keepalive_check
def _extract_openai_full_text(response: Any) -> str:
if response.choices and response.choices[0].message and response.choices[0].message.content is not None:
return response.choices[0].message.content
return ""
def _is_openai_response_valid(response: Any) -> bool:
return bool(response.choices and response.choices[0].message is not None)
async for chunk in _base_fake_stream_engine(
api_call_task_creator=lambda: asyncio.create_task(asyncio.sleep(0, result=full_api_response)),
extract_text_from_response_func=_extract_openai_full_text,
is_valid_response_func=_is_openai_response_valid,
response_id=response_id,
sse_model_name=request_obj.model,
keep_alive_interval_seconds=0,
is_auto_attempt=is_auto_attempt,
reasoning_text_to_yield=separated_reasoning_text,
actual_content_text_to_yield=separated_actual_content_text
):
yield chunk
except Exception as e_outer:
err_msg_detail = f"Error in openai_fake_stream_generator outer (model: '{request_obj.model}'): {type(e_outer).__name__} - {str(e_outer)}"
print(f"ERROR: {err_msg_detail}")
sse_err_msg_display = str(e_outer)
if len(sse_err_msg_display) > 512: sse_err_msg_display = sse_err_msg_display[:512] + "..."
err_resp_sse = create_openai_error_response(500, sse_err_msg_display, "server_error")
json_payload_error = json.dumps(err_resp_sse)
if not is_auto_attempt:
yield f"data: {json_payload_error}\n\n"
yield "data: [DONE]\n\n"
async def execute_gemini_call(
current_client: Any,
model_to_call: str,
prompt_func: Callable[[List[OpenAIMessage]], Union[types.Content, List[types.Content]]],
gen_config_for_call: Dict[str, Any],
request_obj: OpenAIRequest,
is_auto_attempt: bool = False
):
actual_prompt_for_call = prompt_func(request_obj.messages)
client_model_name_for_log = getattr(current_client, 'model_name', 'unknown_direct_client_object')
print(f"INFO: execute_gemini_call for requested API model '{model_to_call}', using client object with internal name '{client_model_name_for_log}'. Original request model: '{request_obj.model}'")
if request_obj.stream:
if app_config.FAKE_STREAMING_ENABLED:
return StreamingResponse(
gemini_fake_stream_generator(
current_client,
model_to_call,
actual_prompt_for_call,
gen_config_for_call,
request_obj,
is_auto_attempt
),
media_type="text/event-stream"
)
response_id_for_stream = f"chatcmpl-{int(time.time())}"
cand_count_stream = request_obj.n or 1
async def _gemini_real_stream_generator_inner():
try:
async for chunk_item_call in await current_client.aio.models.generate_content_stream(
model=model_to_call,
contents=actual_prompt_for_call,
config=gen_config_for_call
):
yield convert_chunk_to_openai(chunk_item_call, request_obj.model, response_id_for_stream, 0)
yield create_final_chunk(request_obj.model, response_id_for_stream, cand_count_stream)
yield "data: [DONE]\n\n"
except Exception as e_stream_call:
err_msg_detail_stream = f"Streaming Error (Gemini API, model string: '{model_to_call}'): {type(e_stream_call).__name__} - {str(e_stream_call)}"
print(f"ERROR: {err_msg_detail_stream}")
s_err = str(e_stream_call); s_err = s_err[:1024]+"..." if len(s_err)>1024 else s_err
err_resp = create_openai_error_response(500,s_err,"server_error")
j_err = json.dumps(err_resp)
if not is_auto_attempt:
yield f"data: {j_err}\n\n"
yield "data: [DONE]\n\n"
raise e_stream_call
return StreamingResponse(_gemini_real_stream_generator_inner(), media_type="text/event-stream")
else:
response_obj_call = await current_client.aio.models.generate_content(
model=model_to_call,
contents=actual_prompt_for_call,
config=gen_config_for_call
)
if hasattr(response_obj_call, 'prompt_feedback') and hasattr(response_obj_call.prompt_feedback, 'block_reason') and response_obj_call.prompt_feedback.block_reason:
block_msg = f"Blocked (Gemini): {response_obj_call.prompt_feedback.block_reason}"
if hasattr(response_obj_call.prompt_feedback,'block_reason_message') and response_obj_call.prompt_feedback.block_reason_message:
block_msg+=f" ({response_obj_call.prompt_feedback.block_reason_message})"
raise ValueError(block_msg)
if not is_gemini_response_valid(response_obj_call):
raise ValueError(f"Invalid non-streaming Gemini response for model string '{model_to_call}'. Resp: {str(response_obj_call)[:200]}")
return JSONResponse(content=convert_to_openai_format(response_obj_call, request_obj.model))