|
import asyncio |
|
import json |
|
from fastapi import APIRouter, Depends, Request |
|
from fastapi.responses import JSONResponse, StreamingResponse |
|
from typing import List, Dict, Any |
|
|
|
|
|
from google.genai import types |
|
from google import genai |
|
|
|
|
|
from models import OpenAIRequest, OpenAIMessage |
|
from auth import get_api_key |
|
|
|
import config as app_config |
|
from vertex_ai_init import VERTEX_EXPRESS_MODELS |
|
from message_processing import ( |
|
create_gemini_prompt, |
|
create_encrypted_gemini_prompt, |
|
create_encrypted_full_gemini_prompt |
|
) |
|
from api_helpers import ( |
|
create_generation_config, |
|
create_openai_error_response, |
|
execute_gemini_call |
|
) |
|
|
|
router = APIRouter() |
|
|
|
|
|
@router.post("/v1/chat/completions") |
|
async def chat_completions(fastapi_request: Request, request: OpenAIRequest, api_key: str = Depends(get_api_key)): |
|
try: |
|
|
|
credential_manager_instance = fastapi_request.app.state.credential_manager |
|
is_auto_model = request.model.endswith("-auto") |
|
is_grounded_search = request.model.endswith("-search") |
|
is_encrypted_model = request.model.endswith("-encrypt") |
|
is_encrypted_full_model = request.model.endswith("-encrypt-full") |
|
is_nothinking_model = request.model.endswith("-nothinking") |
|
is_max_thinking_model = request.model.endswith("-max") |
|
base_model_name = request.model |
|
|
|
if is_auto_model: base_model_name = request.model.replace("-auto", "") |
|
elif is_grounded_search: base_model_name = request.model.replace("-search", "") |
|
elif is_encrypted_model: base_model_name = request.model.replace("-encrypt", "") |
|
elif is_encrypted_full_model: base_model_name = request.model.replace("-encrypt-full", "") |
|
elif is_nothinking_model: base_model_name = request.model.replace("-nothinking","") |
|
elif is_max_thinking_model: base_model_name = request.model.replace("-max","") |
|
generation_config = create_generation_config(request) |
|
|
|
client_to_use = None |
|
express_api_key_val = app_config.VERTEX_EXPRESS_API_KEY_VAL |
|
|
|
if express_api_key_val and base_model_name in VERTEX_EXPRESS_MODELS: |
|
try: |
|
client_to_use = genai.Client(vertexai=True, api_key=express_api_key_val) |
|
print(f"INFO: Using Vertex Express Mode for model {base_model_name}.") |
|
except Exception as e: |
|
print(f"ERROR: Vertex Express Mode client init failed: {e}. Falling back.") |
|
client_to_use = None |
|
|
|
if client_to_use is None: |
|
rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials() |
|
if rotated_credentials and rotated_project_id: |
|
try: |
|
client_to_use = genai.Client(vertexai=True, credentials=rotated_credentials, project=rotated_project_id, location="us-central1") |
|
print(f"INFO: Using rotated credential for project: {rotated_project_id}") |
|
except Exception as e: |
|
print(f"ERROR: Rotated credential client init failed: {e}. Falling back.") |
|
client_to_use = None |
|
|
|
if client_to_use is None: |
|
print("ERROR: No Vertex AI client could be initialized via Express Mode or Rotated Credentials.") |
|
return JSONResponse(status_code=500, content=create_openai_error_response(500, "Vertex AI client not available. Ensure credentials are set up correctly (env var or files).", "server_error")) |
|
|
|
encryption_instructions = ["// Protocol Instructions Placeholder //"] |
|
|
|
if is_auto_model: |
|
print(f"Processing auto model: {request.model}") |
|
attempts = [ |
|
{"name": "base", "model": base_model_name, "prompt_func": create_gemini_prompt, "config_modifier": lambda c: c}, |
|
{"name": "encrypt", "model": base_model_name, "prompt_func": create_encrypted_gemini_prompt, "config_modifier": lambda c: {**c, "system_instruction": encryption_instructions}}, |
|
{"name": "old_format", "model": base_model_name, "prompt_func": create_encrypted_full_gemini_prompt, "config_modifier": lambda c: c} |
|
] |
|
last_err = None |
|
for attempt in attempts: |
|
print(f"Auto-mode attempting: '{attempt['name']}'") |
|
current_gen_config = attempt["config_modifier"](generation_config.copy()) |
|
try: |
|
return await execute_gemini_call(client_to_use, attempt["model"], attempt["prompt_func"], current_gen_config, request) |
|
except Exception as e_auto: |
|
last_err = e_auto |
|
print(f"Auto-attempt '{attempt['name']}' failed: {e_auto}") |
|
await asyncio.sleep(1) |
|
|
|
print(f"All auto attempts failed. Last error: {last_err}") |
|
err_msg = f"All auto-mode attempts failed for {request.model}. Last error: {str(last_err)}" |
|
if not request.stream and last_err: |
|
return JSONResponse(status_code=500, content=create_openai_error_response(500, err_msg, "server_error")) |
|
elif request.stream: |
|
async def final_error_stream(): |
|
err_content = create_openai_error_response(500, err_msg, "server_error") |
|
yield f"data: {json.dumps(err_content)}\n\n" |
|
yield "data: [DONE]\n\n" |
|
return StreamingResponse(final_error_stream(), media_type="text/event-stream") |
|
return JSONResponse(status_code=500, content=create_openai_error_response(500, "All auto-mode attempts failed without specific error.", "server_error")) |
|
|
|
else: |
|
current_prompt_func = create_gemini_prompt |
|
if is_grounded_search: |
|
search_tool = types.Tool(google_search=types.GoogleSearch()) |
|
generation_config["tools"] = [search_tool] |
|
elif is_encrypted_model: |
|
generation_config["system_instruction"] = encryption_instructions |
|
current_prompt_func = create_encrypted_gemini_prompt |
|
elif is_encrypted_full_model: |
|
generation_config["system_instruction"] = encryption_instructions |
|
current_prompt_func = create_encrypted_full_gemini_prompt |
|
elif is_nothinking_model: |
|
generation_config["thinking_config"] = {"thinking_budget": 0} |
|
elif is_max_thinking_model: |
|
generation_config["thinking_config"] = {"thinking_budget": 24576} |
|
|
|
return await execute_gemini_call(client_to_use, base_model_name, current_prompt_func, generation_config, request) |
|
|
|
except Exception as e: |
|
error_msg = f"Unexpected error in chat_completions endpoint: {str(e)}" |
|
print(error_msg) |
|
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error")) |