File size: 16,691 Bytes
b5abced 9f566ef b5abced ebec74a 0a33ddd b5abced ebec74a b5abced df1784a b5abced ebec74a df1784a ebec74a 0a33ddd b5abced 0a33ddd b5abced 0a33ddd b5abced 0a33ddd b5abced ebec74a df1784a ebec74a 0a33ddd df1784a 0a33ddd b5abced 0a33ddd b5abced 0a33ddd df1784a 0a33ddd ebec74a 0a33ddd ebec74a 0a33ddd ebec74a 0a33ddd b5abced 0a33ddd b5abced 9f566ef b5abced df1784a b5abced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
"""
OpenAI handler module for creating clients and processing OpenAI Direct mode responses.
This module encapsulates all OpenAI-specific logic that was previously in chat_api.py.
"""
import json
import time
import asyncio
from typing import Dict, Any, AsyncGenerator
from fastapi.responses import JSONResponse, StreamingResponse
import openai
from google.auth.transport.requests import Request as AuthRequest
from models import OpenAIRequest
from config import VERTEX_REASONING_TAG
import config as app_config
from api_helpers import (
create_openai_error_response,
openai_fake_stream_generator,
StreamingReasoningProcessor
)
from message_processing import extract_reasoning_by_tags
from credentials_manager import _refresh_auth
class OpenAIDirectHandler:
"""Handles OpenAI Direct mode operations including client creation and response processing."""
def __init__(self, credential_manager):
self.credential_manager = credential_manager
self.safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "OFF"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "OFF"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "OFF"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "OFF"},
{"category": 'HARM_CATEGORY_CIVIC_INTEGRITY', "threshold": 'OFF'}
]
def create_openai_client(self, project_id: str, gcp_token: str, location: str = "global") -> openai.AsyncOpenAI:
"""Create an OpenAI client configured for Vertex AI endpoint."""
endpoint_url = (
f"https://aiplatform.googleapis.com/v1beta1/"
f"projects/{project_id}/locations/{location}/endpoints/openapi"
)
return openai.AsyncOpenAI(
base_url=endpoint_url,
api_key=gcp_token, # OAuth token
)
def prepare_openai_params(self, request: OpenAIRequest, model_id: str) -> Dict[str, Any]:
"""Prepare parameters for OpenAI API call."""
params = {
"model": model_id,
"messages": [msg.model_dump(exclude_unset=True) for msg in request.messages],
"temperature": request.temperature,
"max_tokens": request.max_tokens,
"top_p": request.top_p,
"stream": request.stream,
"stop": request.stop,
"seed": request.seed,
"n": request.n,
}
# Remove None values
return {k: v for k, v in params.items() if v is not None}
def prepare_extra_body(self) -> Dict[str, Any]:
"""Prepare extra body parameters for OpenAI API call."""
return {
"extra_body": {
'google': {
'safety_settings': self.safety_settings,
'thought_tag_marker': VERTEX_REASONING_TAG
}
}
}
async def handle_streaming_response(
self,
openai_client: openai.AsyncOpenAI,
openai_params: Dict[str, Any],
openai_extra_body: Dict[str, Any],
request: OpenAIRequest
) -> StreamingResponse:
"""Handle streaming responses for OpenAI Direct mode."""
if app_config.FAKE_STREAMING_ENABLED:
print(f"INFO: OpenAI Fake Streaming (SSE Simulation) ENABLED for model '{request.model}'.")
return StreamingResponse(
openai_fake_stream_generator(
openai_client=openai_client,
openai_params=openai_params,
openai_extra_body=openai_extra_body,
request_obj=request,
is_auto_attempt=False
),
media_type="text/event-stream"
)
else:
print(f"INFO: OpenAI True Streaming ENABLED for model '{request.model}'.")
return StreamingResponse(
self._true_stream_generator(openai_client, openai_params, openai_extra_body, request),
media_type="text/event-stream"
)
async def _true_stream_generator(
self,
openai_client: openai.AsyncOpenAI,
openai_params: Dict[str, Any],
openai_extra_body: Dict[str, Any],
request: OpenAIRequest
) -> AsyncGenerator[str, None]:
"""Generate true streaming response."""
try:
# Ensure stream=True is explicitly passed for real streaming
openai_params_for_stream = {**openai_params, "stream": True}
stream_response = await openai_client.chat.completions.create(
**openai_params_for_stream,
extra_body=openai_extra_body
)
# Create processor for tag-based extraction across chunks
reasoning_processor = StreamingReasoningProcessor(VERTEX_REASONING_TAG)
chunk_count = 0
has_sent_content = False
async for chunk in stream_response:
chunk_count += 1
try:
chunk_as_dict = chunk.model_dump(exclude_unset=True, exclude_none=True)
choices = chunk_as_dict.get('choices')
if choices and isinstance(choices, list) and len(choices) > 0:
delta = choices[0].get('delta')
if delta and isinstance(delta, dict):
# Always remove extra_content if present
if 'extra_content' in delta:
del delta['extra_content']
content = delta.get('content', '')
if content:
# print(f"DEBUG: Chunk {chunk_count} - Raw content: '{content}'")
# Use the processor to extract reasoning
processed_content, current_reasoning = reasoning_processor.process_chunk(content)
# Debug logging for processing results
# if processed_content or current_reasoning:
# print(f"DEBUG: Chunk {chunk_count} - Processed content: '{processed_content}', Reasoning: '{current_reasoning[:50]}...' if len(current_reasoning) > 50 else '{current_reasoning}'")
# Send chunks for both reasoning and content as they arrive
chunks_to_send = []
# If we have reasoning content, send it
if current_reasoning:
reasoning_chunk = chunk_as_dict.copy()
reasoning_chunk['choices'][0]['delta'] = {'reasoning_content': current_reasoning}
chunks_to_send.append(reasoning_chunk)
# If we have regular content, send it
if processed_content:
content_chunk = chunk_as_dict.copy()
content_chunk['choices'][0]['delta'] = {'content': processed_content}
chunks_to_send.append(content_chunk)
has_sent_content = True
# Send all chunks
for chunk_to_send in chunks_to_send:
yield f"data: {json.dumps(chunk_to_send)}\n\n"
else:
# Still yield the chunk even if no content (could have other delta fields)
yield f"data: {json.dumps(chunk_as_dict)}\n\n"
else:
# Yield chunks without choices too (they might contain metadata)
yield f"data: {json.dumps(chunk_as_dict)}\n\n"
except Exception as chunk_error:
error_msg = f"Error processing OpenAI chunk for {request.model}: {str(chunk_error)}"
print(f"ERROR: {error_msg}")
if len(error_msg) > 1024:
error_msg = error_msg[:1024] + "..."
error_response = create_openai_error_response(500, error_msg, "server_error")
yield f"data: {json.dumps(error_response)}\n\n"
yield "data: [DONE]\n\n"
return
# Debug logging for buffer state and chunk count
# print(f"DEBUG: Stream ended after {chunk_count} chunks. Buffer state - tag_buffer: '{reasoning_processor.tag_buffer}', "
# f"inside_tag: {reasoning_processor.inside_tag}, "
# f"reasoning_buffer: '{reasoning_processor.reasoning_buffer[:50]}...' if reasoning_processor.reasoning_buffer else ''")
# Flush any remaining buffered content
remaining_content, remaining_reasoning = reasoning_processor.flush_remaining()
# Send any remaining reasoning first
if remaining_reasoning:
# print(f"DEBUG: Flushing remaining reasoning: '{remaining_reasoning[:50]}...' if len(remaining_reasoning) > 50 else '{remaining_reasoning}'")
reasoning_chunk = {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": request.model,
"choices": [{"index": 0, "delta": {"reasoning_content": remaining_reasoning}, "finish_reason": None}]
}
yield f"data: {json.dumps(reasoning_chunk)}\n\n"
# Send any remaining content
if remaining_content:
# print(f"DEBUG: Flushing remaining content: '{remaining_content}'")
final_chunk = {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": request.model,
"choices": [{"index": 0, "delta": {"content": remaining_content}, "finish_reason": None}]
}
yield f"data: {json.dumps(final_chunk)}\n\n"
has_sent_content = True
# Always send a finish reason chunk
finish_chunk = {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": request.model,
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]
}
yield f"data: {json.dumps(finish_chunk)}\n\n"
yield "data: [DONE]\n\n"
except Exception as stream_error:
error_msg = str(stream_error)
if len(error_msg) > 1024:
error_msg = error_msg[:1024] + "..."
error_msg_full = f"Error during OpenAI streaming for {request.model}: {error_msg}"
print(f"ERROR: {error_msg_full}")
error_response = create_openai_error_response(500, error_msg_full, "server_error")
yield f"data: {json.dumps(error_response)}\n\n"
yield "data: [DONE]\n\n"
async def handle_non_streaming_response(
self,
openai_client: openai.AsyncOpenAI,
openai_params: Dict[str, Any],
openai_extra_body: Dict[str, Any],
request: OpenAIRequest
) -> JSONResponse:
"""Handle non-streaming responses for OpenAI Direct mode."""
try:
# Ensure stream=False is explicitly passed
openai_params_non_stream = {**openai_params, "stream": False}
response = await openai_client.chat.completions.create(
**openai_params_non_stream,
extra_body=openai_extra_body
)
response_dict = response.model_dump(exclude_unset=True, exclude_none=True)
try:
choices = response_dict.get('choices')
if choices and isinstance(choices, list) and len(choices) > 0:
message_dict = choices[0].get('message')
if message_dict and isinstance(message_dict, dict):
# Always remove extra_content from the message if it exists
if 'extra_content' in message_dict:
del message_dict['extra_content']
# Extract reasoning from content
full_content = message_dict.get('content')
actual_content = full_content if isinstance(full_content, str) else ""
if actual_content:
print(f"INFO: OpenAI Direct Non-Streaming - Applying tag extraction with fixed marker: '{VERTEX_REASONING_TAG}'")
reasoning_text, actual_content = extract_reasoning_by_tags(actual_content, VERTEX_REASONING_TAG)
message_dict['content'] = actual_content
if reasoning_text:
message_dict['reasoning_content'] = reasoning_text
# print(f"DEBUG: Tag extraction success. Reasoning len: {len(reasoning_text)}, Content len: {len(actual_content)}")
# else:
# print(f"DEBUG: No content found within fixed tag '{VERTEX_REASONING_TAG}'.")
else:
print(f"WARNING: OpenAI Direct Non-Streaming - No initial content found in message.")
message_dict['content'] = ""
except Exception as e_reasoning:
print(f"WARNING: Error during non-streaming reasoning processing for model {request.model}: {e_reasoning}")
return JSONResponse(content=response_dict)
except Exception as e:
error_msg = f"Error calling OpenAI client for {request.model}: {str(e)}"
print(f"ERROR: {error_msg}")
return JSONResponse(
status_code=500,
content=create_openai_error_response(500, error_msg, "server_error")
)
async def process_request(self, request: OpenAIRequest, base_model_name: str):
"""Main entry point for processing OpenAI Direct mode requests."""
print(f"INFO: Using OpenAI Direct Path for model: {request.model}")
# Get credentials
rotated_credentials, rotated_project_id = self.credential_manager.get_credentials()
if not rotated_credentials or not rotated_project_id:
error_msg = "OpenAI Direct Mode requires GCP credentials, but none were available or loaded successfully."
print(f"ERROR: {error_msg}")
return JSONResponse(
status_code=500,
content=create_openai_error_response(500, error_msg, "server_error")
)
print(f"INFO: [OpenAI Direct Path] Using credentials for project: {rotated_project_id}")
gcp_token = _refresh_auth(rotated_credentials)
if not gcp_token:
error_msg = f"Failed to obtain valid GCP token for OpenAI client (Project: {rotated_project_id})."
print(f"ERROR: {error_msg}")
return JSONResponse(
status_code=500,
content=create_openai_error_response(500, error_msg, "server_error")
)
# Create client and prepare parameters
openai_client = self.create_openai_client(rotated_project_id, gcp_token)
model_id = f"google/{base_model_name}"
openai_params = self.prepare_openai_params(request, model_id)
openai_extra_body = self.prepare_extra_body()
# Handle streaming vs non-streaming
if request.stream:
return await self.handle_streaming_response(
openai_client, openai_params, openai_extra_body, request
)
else:
return await self.handle_non_streaming_response(
openai_client, openai_params, openai_extra_body, request
) |