Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*- Nour Eddine Zekaoui et al.
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from peft import PeftModel
|
7 |
+
from transformers import (
|
8 |
+
AutoTokenizer,
|
9 |
+
BitsAndBytesConfig,
|
10 |
+
AutoModelForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
def generate_prompt(instruction, input=None):
|
14 |
+
if input:
|
15 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501
|
16 |
+
|
17 |
+
### Instruction:
|
18 |
+
{instruction}
|
19 |
+
|
20 |
+
### Input:
|
21 |
+
{input}
|
22 |
+
|
23 |
+
### Response:
|
24 |
+
"""
|
25 |
+
else:
|
26 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # noqa: E501
|
27 |
+
|
28 |
+
### Instruction:
|
29 |
+
{instruction}
|
30 |
+
|
31 |
+
### Response:
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
based_model_path = "meta-llama/Meta-Llama-3-8B"
|
36 |
+
lora_weights = "NouRed/BioMed-Tuned-Llama-3-8b"
|
37 |
+
|
38 |
+
load_in_4bit=True
|
39 |
+
bnb_4bit_use_double_quant=True
|
40 |
+
bnb_4bit_quant_type="nf4"
|
41 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
43 |
+
|
44 |
+
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
46 |
+
based_model_path,
|
47 |
+
)
|
48 |
+
|
49 |
+
tokenizer.padding_side = 'right'
|
50 |
+
tokenizer.pad_token = tokenizer.eos_token
|
51 |
+
tokenizer.add_eos_token = True
|
52 |
+
|
53 |
+
|
54 |
+
quantization_config = BitsAndBytesConfig(
|
55 |
+
load_in_4bit=load_in_4bit,
|
56 |
+
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
|
57 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
58 |
+
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype
|
59 |
+
)
|
60 |
+
|
61 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
based_model_path,
|
63 |
+
device_map="auto",
|
64 |
+
attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM 😎
|
65 |
+
quantization_config=quantization_config,
|
66 |
+
)
|
67 |
+
|
68 |
+
model = PeftModel.from_pretrained(
|
69 |
+
base_model,
|
70 |
+
lora_weights,
|
71 |
+
torch_dtype=torch.float16,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def generate(
|
76 |
+
instruction,
|
77 |
+
input=None,
|
78 |
+
temperature=0.1,
|
79 |
+
top_p=0.9,
|
80 |
+
top_k=40,
|
81 |
+
num_beams=4,
|
82 |
+
max_new_tokens=128,
|
83 |
+
do_sample=True,
|
84 |
+
**kwargs):
|
85 |
+
|
86 |
+
prompt = generate_prompt(instruction, input)
|
87 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
generated_ids = model.generate(
|
91 |
+
**inputs,
|
92 |
+
top_p=top_p,
|
93 |
+
top_k=top_k,
|
94 |
+
do_sample=do_sample,
|
95 |
+
max_new_tokens=max_new_tokens,
|
96 |
+
)
|
97 |
+
|
98 |
+
output = tokenizer.decode(
|
99 |
+
generated_ids[0],
|
100 |
+
skip_special_tokens=True,
|
101 |
+
clean_up_tokenization_spaces=True
|
102 |
+
)
|
103 |
+
|
104 |
+
response = output.split("### Response:")[1].strip()
|
105 |
+
|
106 |
+
return response
|
107 |
+
|
108 |
+
|
109 |
+
description = """
|
110 |
+
<div style="justify-content: center; text-align: center;">
|
111 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
112 |
+
<h2>
|
113 |
+
<p> BioMed-LLaMa-3: Effecient Intruction Fine-Tuning in Biomedical Language</p>
|
114 |
+
</h2>
|
115 |
+
</div>
|
116 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
117 |
+
<a href="https://huggingface.co/NouRed/BioMed-Tuned-Llama-3-8b" target="_blank"><img src="https://img.shields.io/badge/🤗_Hugging_Face-BioMedLLaMa3-orange" alt="HF HUB"></a>
|
118 |
+
<a href="https://colab.research.google.com/drive/1PDa8b5TqpAYxDVlF0Elv32KOM2kFaXJh" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Inference Notebook"></a>
|
119 |
+
</div>
|
120 |
+
</div>
|
121 |
+
"""
|
122 |
+
|
123 |
+
|
124 |
+
gr.Interface(
|
125 |
+
fn=generate,
|
126 |
+
inputs=[
|
127 |
+
gr.components.Textbox(
|
128 |
+
lines=2,
|
129 |
+
label="Instruction",
|
130 |
+
placeholder="Tell me about Covid-19?",
|
131 |
+
),
|
132 |
+
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
133 |
+
gr.components.Slider(
|
134 |
+
minimum=0, maximum=1, value=0.1, label="Temperature"
|
135 |
+
),
|
136 |
+
gr.components.Slider(
|
137 |
+
minimum=0, maximum=1, value=0.9, label="Top p"
|
138 |
+
),
|
139 |
+
gr.components.Slider(
|
140 |
+
minimum=0, maximum=100, step=1, value=40, label="Top k"
|
141 |
+
),
|
142 |
+
gr.components.Slider(
|
143 |
+
minimum=1, maximum=4, step=1, value=4, label="Beams"
|
144 |
+
),
|
145 |
+
gr.components.Slider(
|
146 |
+
minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
|
147 |
+
),
|
148 |
+
gr.components.Checkbox(
|
149 |
+
value=True, label="Do Sample", info="Do you want to use sampling during text generation?"
|
150 |
+
),
|
151 |
+
],
|
152 |
+
outputs=[
|
153 |
+
gr.components.Textbox(
|
154 |
+
lines=5,
|
155 |
+
label="Output",
|
156 |
+
)
|
157 |
+
],
|
158 |
+
examples=[
|
159 |
+
["Suggest treatment for pneumonia", "", 0.1, 0.9, 40, 4, 128, True],
|
160 |
+
["I have a sore throat, slight cough, tiredness. should i get tested fro covid 19?", "", 0.1, 0.9, 40, 4, 128, True],
|
161 |
+
["Husband of this patient asked me how to treat premature ejaculation and how to increase her libido.", "", 0.1, 0.9, 40, 4, 128, True],
|
162 |
+
],
|
163 |
+
theme="soft",
|
164 |
+
description=description, # noqa: E501
|
165 |
+
).launch()
|