Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,6 @@ from transformers import (
|
|
11 |
AutoModelForCausalLM)
|
12 |
|
13 |
|
14 |
-
@spaces.GPU
|
15 |
def generate_prompt(instruction, input=None):
|
16 |
if input:
|
17 |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501
|
@@ -33,46 +32,51 @@ def generate_prompt(instruction, input=None):
|
|
33 |
### Response:
|
34 |
"""
|
35 |
|
36 |
-
|
37 |
@spaces.GPU
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
tokenizer.pad_token = tokenizer.eos_token
|
54 |
-
tokenizer.add_eos_token = True
|
55 |
-
|
56 |
-
|
57 |
-
quantization_config = BitsAndBytesConfig(
|
58 |
-
load_in_4bit=load_in_4bit,
|
59 |
-
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
|
60 |
-
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
61 |
-
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype
|
62 |
-
)
|
63 |
|
64 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
65 |
-
based_model_path,
|
66 |
-
device_map="auto",
|
67 |
-
attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM 😎
|
68 |
-
quantization_config=quantization_config,
|
69 |
-
)
|
70 |
|
71 |
-
model =
|
72 |
-
base_model,
|
73 |
-
lora_weights,
|
74 |
-
torch_dtype=torch.float16,
|
75 |
-
)
|
76 |
|
77 |
|
78 |
@spaces.GPU
|
|
|
11 |
AutoModelForCausalLM)
|
12 |
|
13 |
|
|
|
14 |
def generate_prompt(instruction, input=None):
|
15 |
if input:
|
16 |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501
|
|
|
32 |
### Response:
|
33 |
"""
|
34 |
|
|
|
35 |
@spaces.GPU
|
36 |
+
def models():
|
37 |
+
based_model_path = "meta-llama/Meta-Llama-3-8B"
|
38 |
+
lora_weights = "NouRed/BioMed-Tuned-Llama-3-8b"
|
39 |
+
|
40 |
+
load_in_4bit=True
|
41 |
+
bnb_4bit_use_double_quant=True
|
42 |
+
bnb_4bit_quant_type="nf4"
|
43 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
45 |
+
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
48 |
+
based_model_path,
|
49 |
+
)
|
50 |
+
|
51 |
+
tokenizer.padding_side = 'right'
|
52 |
+
tokenizer.pad_token = tokenizer.eos_token
|
53 |
+
tokenizer.add_eos_token = True
|
54 |
+
|
55 |
+
|
56 |
+
quantization_config = BitsAndBytesConfig(
|
57 |
+
load_in_4bit=load_in_4bit,
|
58 |
+
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
|
59 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
60 |
+
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype
|
61 |
)
|
62 |
+
|
63 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
64 |
+
based_model_path,
|
65 |
+
device_map="auto",
|
66 |
+
attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM 😎
|
67 |
+
quantization_config=quantization_config,
|
68 |
+
)
|
69 |
+
|
70 |
+
model = PeftModel.from_pretrained(
|
71 |
+
base_model,
|
72 |
+
lora_weights,
|
73 |
+
torch_dtype=torch.float16,
|
74 |
+
)
|
75 |
|
76 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
model, tokenizer = models()
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
@spaces.GPU
|