Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -36,51 +36,44 @@ def generate_prompt(instruction, input=None):
|
|
36 |
### Response:
|
37 |
"""
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
52 |
-
based_model_path,
|
53 |
-
)
|
54 |
-
|
55 |
-
tokenizer.padding_side = 'right'
|
56 |
-
tokenizer.pad_token = tokenizer.eos_token
|
57 |
-
tokenizer.add_eos_token = True
|
58 |
-
|
59 |
-
|
60 |
-
quantization_config = BitsAndBytesConfig(
|
61 |
-
load_in_4bit=load_in_4bit,
|
62 |
-
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
|
63 |
-
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
64 |
-
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype
|
65 |
)
|
66 |
-
|
67 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
68 |
-
based_model_path,
|
69 |
-
device_map="auto",
|
70 |
-
attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM 😎
|
71 |
-
quantization_config=quantization_config,
|
72 |
-
)
|
73 |
-
|
74 |
-
model = PeftModel.from_pretrained(
|
75 |
-
base_model,
|
76 |
-
lora_weights,
|
77 |
-
torch_dtype=torch.float16,
|
78 |
-
)
|
79 |
|
80 |
-
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
@spaces.GPU
|
|
|
36 |
### Response:
|
37 |
"""
|
38 |
|
39 |
+
based_model_path = "meta-llama/Meta-Llama-3-8B"
|
40 |
+
lora_weights = "NouRed/BioMed-Tuned-Llama-3-8b"
|
41 |
+
|
42 |
+
load_in_4bit=True
|
43 |
+
bnb_4bit_use_double_quant=True
|
44 |
+
bnb_4bit_quant_type="nf4"
|
45 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
46 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
+
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
50 |
+
based_model_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
tokenizer.padding_side = 'right'
|
54 |
+
tokenizer.pad_token = tokenizer.eos_token
|
55 |
+
tokenizer.add_eos_token = True
|
56 |
+
|
57 |
|
58 |
+
quantization_config = BitsAndBytesConfig(
|
59 |
+
load_in_4bit=load_in_4bit,
|
60 |
+
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
|
61 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
62 |
+
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype
|
63 |
+
)
|
64 |
|
65 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
66 |
+
based_model_path,
|
67 |
+
device_map="auto",
|
68 |
+
attn_implementation="flash_attention_2", # I have an A100 GPU with 40GB of RAM 😎
|
69 |
+
quantization_config=quantization_config,
|
70 |
+
)
|
71 |
+
|
72 |
+
model = PeftModel.from_pretrained(
|
73 |
+
base_model,
|
74 |
+
lora_weights,
|
75 |
+
torch_dtype=torch.float16,
|
76 |
+
)
|
77 |
|
78 |
|
79 |
@spaces.GPU
|