Spaces:
Running
Running
AI_text_detector
Browse filesDetect AI-generated text using a Hugging Face model. This tool analyzes input and returns how likely it was written by AI vs a human. Built with Gradio.
- AI_text_detector +30 -0
AI_text_detector
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "roberta-base-openai-detector"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def detect_ai(text):
|
11 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
12 |
+
with torch.no_grad():
|
13 |
+
outputs = model(**inputs)
|
14 |
+
logits = outputs.logits
|
15 |
+
probs = torch.softmax(logits, dim=1)
|
16 |
+
ai_score = probs[0][1].item() * 100
|
17 |
+
human_score = probs[0][0].item() * 100
|
18 |
+
|
19 |
+
result = f"AI-generated: {ai_score:.2f}%\\nHuman-written: {human_score:.2f}%"
|
20 |
+
return result
|
21 |
+
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=detect_ai,
|
24 |
+
inputs=gr.Textbox(label="Enter text to analyze", lines=10),
|
25 |
+
outputs=gr.Textbox(label="Detection Result"),
|
26 |
+
title="AI Detector",
|
27 |
+
description="Detect if a piece of text was written by AI or a human using a Hugging Face model."
|
28 |
+
)
|
29 |
+
|
30 |
+
iface.launch()
|