Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import numpy as np
|
5 |
+
from transformers import Wav2Vec2Processor, HubertModel
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# โหลด processor, model HuBERT และ fine-tuned classifier
|
11 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft")
|
12 |
+
model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
# โหลดไฟล์ scaler และ model classifier
|
18 |
+
import joblib
|
19 |
+
scaler = joblib.load("scaler.joblib")
|
20 |
+
model_cls = torch.load("classifier.pth", map_location=device)
|
21 |
+
model_cls.eval()
|
22 |
+
|
23 |
+
def extract_mean_embedding(wav_path):
|
24 |
+
waveform, sample_rate = torchaudio.load(wav_path)
|
25 |
+
waveform = waveform.squeeze()
|
26 |
+
inputs = processor(waveform, sampling_rate=sample_rate, return_tensors="pt", padding=True)
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(**inputs)
|
29 |
+
embedding = outputs.last_hidden_state
|
30 |
+
mean_embedding = embedding.mean(dim=1).squeeze().numpy()
|
31 |
+
return mean_embedding
|
32 |
+
|
33 |
+
def predict_water_status(file):
|
34 |
+
vec = extract_mean_embedding(file).reshape(1, -1)
|
35 |
+
vec_scaled = scaler.transform(vec)
|
36 |
+
vec_tensor = torch.tensor(vec_scaled, dtype=torch.float32).to(device)
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model_cls(vec_tensor)
|
39 |
+
pred = outputs.argmax(dim=1).item()
|
40 |
+
return "🌵 ขาดน้ำ" if pred == 0 else "💧 มีน้ำเพียงพอ"
|
41 |
+
|
42 |
+
with gr.Blocks() as interface:
|
43 |
+
gr.Markdown("## 🌱 Plant Sound Classifier (Fine-tuned)")
|
44 |
+
gr.Markdown("อัปโหลดเสียงพืชเพื่อทำนายสถานะ: ขาดน้ำ หรือ มีน้ำเพียงพอ")
|
45 |
+
|
46 |
+
audio_input = gr.Audio(type="filepath", label="🎧 อัปโหลดเสียงพืช (.wav)")
|
47 |
+
output_text = gr.Textbox(label="📋 ผลการทำนาย", lines=2)
|
48 |
+
|
49 |
+
with gr.Row():
|
50 |
+
submit_btn = gr.Button("Submit")
|
51 |
+
clear_btn = gr.Button("Clear")
|
52 |
+
|
53 |
+
submit_btn.click(
|
54 |
+
fn=predict_water_status,
|
55 |
+
inputs=audio_input,
|
56 |
+
outputs=output_text
|
57 |
+
)
|
58 |
+
|
59 |
+
clear_btn.click(
|
60 |
+
fn=lambda: (None, ""),
|
61 |
+
inputs=[],
|
62 |
+
outputs=[audio_input, output_text]
|
63 |
+
)
|
64 |
+
|
65 |
+
interface.launch()
|