File size: 3,017 Bytes
2c8e31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
from torchvision import transforms
from PIL import Image
import json
import numpy as np
# from model import load_model
from transformers import AutoImageProcessor, SwinForImageClassification
import torch.nn as nn
import os
import pandas as pd
import random

# Load labels
with open("labels.json", "r") as f:
    class_names = json.load(f)
print("class_names:", class_names)

# Load model

model = SwinForImageClassification.from_pretrained("microsoft/swin-base-patch4-window7-224")

model.classifier = torch.nn.Linear(model.classifier.in_features, len(class_names))

state_dict = torch.load("best_model.pth", map_location="cpu")

# Remove incompatible keys (classifier weights)
filtered_state_dict = {k: v for k, v in state_dict.items() if "classifier" not in k}
model.load_state_dict(filtered_state_dict, strict=False)

model.eval()


# Image transform
# transform = transforms.Compose([
#     transforms.Resize((224, 224)),
#     transforms.ToTensor(),
#     transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
# ])
#Swin
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
])


def predict(image_path):
    # Load and prepare image
    image = Image.open(image_path).convert("RGB")
    x = transform(image).unsqueeze(0)

    with torch.no_grad():
        outputs = model(x)
        print("Logits:", outputs.logits)
        probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
        print("Probs:", probs)
        print("Sum of probs:", probs.sum())
        top5 = torch.topk(probs, k=5)

    top1_idx = int(top5.indices[0])
    top1_label = class_names[top1_idx]

    # Select a random image from the class subfolder
    class_folder = f"sample_images/{str(top1_label).replace(' ', '_')}"
    reference_image = None
    if os.path.isdir(class_folder):
        # List all image files in the folder
        image_files = [f for f in os.listdir(class_folder) if f.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".gif", ".webp"))]
        if image_files:
            chosen_file = random.choice(image_files)
            ref_path = os.path.join(class_folder, chosen_file)
            print(f"[DEBUG] Randomly selected reference image: {ref_path}")
            reference_image = Image.open(ref_path).convert("RGB")
        else:
            print(f"[DEBUG] No images found in {class_folder}")
    else:
        print(f"[DEBUG] Class folder does not exist: {class_folder}")

    # Format Top-5 for gr.Label with class names
    top5_probs = {class_names[int(idx)]: float(score) for idx, score in zip(top5.indices, top5.values)}
    print(f"image path: {image_path}")
    print(f"top1_label: {top1_label}")
    print(f"[DEBUG] Top-5 indices: {top5.indices}")
    print(f"[DEBUG] Top-5 labels: {[class_names[int(idx)] for idx in top5.indices]}")
    print(f"[DEBUG] Top-5 probs: {top5_probs}")

    return image, reference_image, top5_probs