Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,13 @@ import os
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Define paths for storage - avoid persistent folder issues
|
7 |
MODEL_CACHE_DIR = "./model_cache"
|
@@ -19,7 +26,7 @@ os.makedirs(TRANSFORMERS_CACHE_DIR, exist_ok=True)
|
|
19 |
|
20 |
# Initialize the model and tokenizer - only when explicitly requested
|
21 |
def initialize_model():
|
22 |
-
|
23 |
|
24 |
try:
|
25 |
# Load the tokenizer
|
@@ -32,197 +39,246 @@ def initialize_model():
|
|
32 |
model = AutoModelForCausalLM.from_pretrained(
|
33 |
"abhinand/tamil-llama-7b-instruct-v0.2",
|
34 |
device_map="auto",
|
35 |
-
torch_dtype=
|
36 |
low_cpu_mem_usage=True,
|
37 |
cache_dir=MODEL_CACHE_DIR
|
38 |
)
|
39 |
|
40 |
-
|
|
|
41 |
return model, tokenizer
|
42 |
except Exception as e:
|
43 |
-
|
44 |
return None, None
|
45 |
|
46 |
# Generate response
|
47 |
def generate_response(model, tokenizer, user_input, chat_history, temperature=0.2, top_p=1.0, top_k=40):
|
48 |
# Check if model and tokenizer are loaded
|
49 |
if model is None or tokenizer is None:
|
50 |
-
return "மாதிரி ஏற்றப்படவில்லை. 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்." # Model not loaded
|
51 |
-
|
52 |
-
# System message for the Tamil LLaMA model
|
53 |
-
system_message = "You are a helpful assistant that provides accurate information in Tamil language."
|
54 |
-
|
55 |
-
# Create the prompt using the template from documentation
|
56 |
-
prompt_template = f"<|im_start|>system\n{system_message}<|im_end|>\n"
|
57 |
-
|
58 |
-
# Process conversation history - chat_history format is list of tuples [(user_msg, bot_msg), ...]
|
59 |
-
if chat_history:
|
60 |
-
for user_msg, bot_msg in chat_history:
|
61 |
-
if user_msg and bot_msg: # Ensure both messages exist
|
62 |
-
prompt_template += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
|
63 |
-
prompt_template += f"<|im_start|>assistant\n{bot_msg}<|im_end|>\n"
|
64 |
-
|
65 |
-
# Add the current user message
|
66 |
-
prompt_template += f"<|im_start|>user\n{user_input}<|im_end|>\n"
|
67 |
-
prompt_template += "<|im_start|>assistant\n"
|
68 |
|
69 |
try:
|
|
|
|
|
|
|
|
|
|
|
70 |
# Tokenize input
|
71 |
-
inputs = tokenizer(
|
72 |
input_ids = inputs["input_ids"].to(model.device)
|
73 |
attention_mask = inputs["attention_mask"].to(model.device)
|
74 |
|
|
|
|
|
|
|
|
|
75 |
# Generate response with user-specified parameters
|
76 |
with torch.no_grad():
|
77 |
-
|
78 |
input_ids,
|
79 |
attention_mask=attention_mask,
|
80 |
-
max_new_tokens=
|
81 |
do_sample=True,
|
82 |
temperature=temperature,
|
83 |
top_p=top_p,
|
84 |
top_k=top_k,
|
85 |
-
pad_token_id=tokenizer.eos_token_id
|
86 |
-
eos_token_id=tokenizer.encode("<|im_end|>", add_special_tokens=False)[0] if "<|im_end|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
|
87 |
)
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
# Extract the response by removing special tokens
|
95 |
-
assistant_response = generated_text.split("<|im_end|>")[0].strip() if "<|im_end|>" in generated_text else generated_text.strip()
|
96 |
-
|
97 |
-
print(f"Generated response: {assistant_response}") # Debug print
|
98 |
-
return assistant_response
|
99 |
except Exception as e:
|
100 |
-
|
101 |
-
return f"பிழை
|
102 |
-
|
103 |
-
# Function to vote/like a response
|
104 |
-
def vote(data, vote_type, model_name):
|
105 |
-
# This is a placeholder for the voting functionality
|
106 |
-
print(f"Received {vote_type} for response: {data}")
|
107 |
-
return data
|
108 |
|
109 |
# Create the Gradio interface
|
110 |
def create_chatbot_interface():
|
111 |
-
with gr.Blocks(
|
112 |
title = "# தமிழ் உரையாடல் பொத்தான் (Tamil Chatbot)"
|
113 |
description = "Tamil LLaMA 7B Instruct model with user-controlled generation parameters."
|
114 |
|
115 |
gr.Markdown(title)
|
116 |
gr.Markdown(description)
|
117 |
|
118 |
-
#
|
119 |
-
with gr.
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
minimum=0.0,
|
143 |
-
maximum=1.0,
|
144 |
-
step=0.01,
|
145 |
-
interactive=True,
|
146 |
-
info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it"
|
147 |
)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
maximum=1000,
|
154 |
-
step=1,
|
155 |
-
interactive=True,
|
156 |
-
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit."
|
157 |
)
|
158 |
|
159 |
-
#
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
)
|
183 |
|
184 |
-
#
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
return demo
|
227 |
|
228 |
# Create and launch the demo
|
@@ -230,4 +286,4 @@ demo = create_chatbot_interface()
|
|
230 |
|
231 |
# Launch the demo
|
232 |
if __name__ == "__main__":
|
233 |
-
demo.queue(
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Set up logging
|
8 |
+
logging.basicConfig(level=logging.INFO,
|
9 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
10 |
+
handlers=[logging.StreamHandler()])
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
|
13 |
# Define paths for storage - avoid persistent folder issues
|
14 |
MODEL_CACHE_DIR = "./model_cache"
|
|
|
26 |
|
27 |
# Initialize the model and tokenizer - only when explicitly requested
|
28 |
def initialize_model():
|
29 |
+
logger.info("Loading model and tokenizer... This may take a few minutes.")
|
30 |
|
31 |
try:
|
32 |
# Load the tokenizer
|
|
|
39 |
model = AutoModelForCausalLM.from_pretrained(
|
40 |
"abhinand/tamil-llama-7b-instruct-v0.2",
|
41 |
device_map="auto",
|
42 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
43 |
low_cpu_mem_usage=True,
|
44 |
cache_dir=MODEL_CACHE_DIR
|
45 |
)
|
46 |
|
47 |
+
logger.info(f"Model device: {next(model.parameters()).device}")
|
48 |
+
logger.info("Model and tokenizer loaded successfully!")
|
49 |
return model, tokenizer
|
50 |
except Exception as e:
|
51 |
+
logger.error(f"Error loading model: {e}")
|
52 |
return None, None
|
53 |
|
54 |
# Generate response
|
55 |
def generate_response(model, tokenizer, user_input, chat_history, temperature=0.2, top_p=1.0, top_k=40):
|
56 |
# Check if model and tokenizer are loaded
|
57 |
if model is None or tokenizer is None:
|
58 |
+
return "மாதிரி ஏற்றப்படவில்லை. 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்." # Model not loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
try:
|
61 |
+
logger.info(f"Generating response for input: {user_input[:50]}...")
|
62 |
+
|
63 |
+
# Simple prompt approach to test basic generation
|
64 |
+
prompt = f"<|im_start|>user\n{user_input}<|im_end|>\n<|im_start|>assistant\n"
|
65 |
+
|
66 |
# Tokenize input
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
68 |
input_ids = inputs["input_ids"].to(model.device)
|
69 |
attention_mask = inputs["attention_mask"].to(model.device)
|
70 |
|
71 |
+
# Debug info
|
72 |
+
logger.info(f"Input shape: {input_ids.shape}")
|
73 |
+
logger.info(f"Device: {input_ids.device}")
|
74 |
+
|
75 |
# Generate response with user-specified parameters
|
76 |
with torch.no_grad():
|
77 |
+
output_ids = model.generate(
|
78 |
input_ids,
|
79 |
attention_mask=attention_mask,
|
80 |
+
max_new_tokens=100, # Start with a smaller value for testing
|
81 |
do_sample=True,
|
82 |
temperature=temperature,
|
83 |
top_p=top_p,
|
84 |
top_k=top_k,
|
85 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
86 |
)
|
87 |
|
88 |
+
# Get only the generated part
|
89 |
+
new_tokens = output_ids[0, input_ids.shape[1]:]
|
90 |
+
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
91 |
+
|
92 |
+
logger.info(f"Generated response (raw): {response}")
|
93 |
+
|
94 |
+
# Clean up response if needed
|
95 |
+
if "<|im_end|>" in response:
|
96 |
+
response = response.split("<|im_end|>")[0].strip()
|
97 |
+
|
98 |
+
logger.info(f"Final response: {response}")
|
99 |
+
|
100 |
+
# Fallback if empty response
|
101 |
+
if not response or response.isspace():
|
102 |
+
logger.warning("Empty response generated, returning fallback message")
|
103 |
+
return "வருந்துகிறேன், பதிலை உருவாக்குவதில் சிக்கல் உள்ளது. மீண்டும் முயற்சிக்கவும்." # Sorry, there was a problem generating a response
|
104 |
+
|
105 |
+
return response
|
106 |
|
|
|
|
|
|
|
|
|
|
|
107 |
except Exception as e:
|
108 |
+
logger.error(f"Error generating response: {e}", exc_info=True)
|
109 |
+
return f"பிழை ஏற்பட்டது: {str(e)}" # Error occurred
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
# Create the Gradio interface
|
112 |
def create_chatbot_interface():
|
113 |
+
with gr.Blocks() as demo:
|
114 |
title = "# தமிழ் உரையாடல் பொத்தான் (Tamil Chatbot)"
|
115 |
description = "Tamil LLaMA 7B Instruct model with user-controlled generation parameters."
|
116 |
|
117 |
gr.Markdown(title)
|
118 |
gr.Markdown(description)
|
119 |
|
120 |
+
# Add a direct testing area to debug the model
|
121 |
+
with gr.Tab("Debug Mode"):
|
122 |
+
with gr.Row():
|
123 |
+
debug_status = gr.Markdown("⚠️ Debug Mode - Model not loaded")
|
124 |
+
debug_load_model_btn = gr.Button("Load Model (Debug)")
|
125 |
+
|
126 |
+
debug_model = gr.State(None)
|
127 |
+
debug_tokenizer = gr.State(None)
|
128 |
+
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column(scale=3):
|
131 |
+
debug_input = gr.Textbox(label="Input Text", lines=3)
|
132 |
+
debug_submit = gr.Button("Generate Response")
|
133 |
+
with gr.Column(scale=3):
|
134 |
+
debug_output = gr.Textbox(label="Raw Output", lines=8)
|
135 |
+
|
136 |
+
def debug_load_model_fn():
|
137 |
+
m, t = initialize_model()
|
138 |
+
if m is not None and t is not None:
|
139 |
+
return "✅ Debug Model loaded", m, t
|
140 |
+
else:
|
141 |
+
return "❌ Debug Model loading failed", None, None
|
142 |
+
|
143 |
+
def debug_generate(input_text, model, tokenizer):
|
144 |
+
if model is None:
|
145 |
+
return "Model not loaded yet. Please load the model first."
|
146 |
+
|
147 |
+
try:
|
148 |
+
# Simple direct generation for testing
|
149 |
+
prompt = f"<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant\n"
|
150 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
151 |
+
|
152 |
+
with torch.no_grad():
|
153 |
+
output_ids = model.generate(
|
154 |
+
inputs["input_ids"],
|
155 |
+
max_new_tokens=100,
|
156 |
+
temperature=0.2,
|
157 |
+
do_sample=True
|
158 |
+
)
|
159 |
+
|
160 |
+
full_output = tokenizer.decode(output_ids[0], skip_special_tokens=False)
|
161 |
+
response = full_output[len(prompt):]
|
162 |
+
|
163 |
+
# Log the full output for debugging
|
164 |
+
logger.info(f"Debug full output: {full_output}")
|
165 |
+
|
166 |
+
return f"FULL OUTPUT:\n{full_output}\n\nEXTRACTED:\n{response}"
|
167 |
+
except Exception as e:
|
168 |
+
logger.error(f"Debug error: {e}", exc_info=True)
|
169 |
+
return f"Error: {str(e)}"
|
170 |
|
171 |
+
debug_load_model_btn.click(
|
172 |
+
debug_load_model_fn,
|
173 |
+
outputs=[debug_status, debug_model, debug_tokenizer]
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
175 |
|
176 |
+
debug_submit.click(
|
177 |
+
debug_generate,
|
178 |
+
inputs=[debug_input, debug_model, debug_tokenizer],
|
179 |
+
outputs=[debug_output]
|
|
|
|
|
|
|
|
|
180 |
)
|
181 |
|
182 |
+
# Regular chatbot interface
|
183 |
+
with gr.Tab("Chatbot"):
|
184 |
+
# Model loading indicator
|
185 |
+
with gr.Row():
|
186 |
+
model_status = gr.Markdown("⚠️ மாதிரி ஏற்றப்படவில்லை (Model not loaded)")
|
187 |
+
load_model_btn = gr.Button("மாதிரியை ஏற்று (Load Model)")
|
188 |
+
|
189 |
+
# Model and tokenizer states
|
190 |
+
model = gr.State(None)
|
191 |
+
tokenizer = gr.State(None)
|
192 |
+
|
193 |
+
# Parameter sliders
|
194 |
+
with gr.Accordion("Generation Parameters", open=False):
|
195 |
+
temperature = gr.Slider(
|
196 |
+
label="temperature",
|
197 |
+
value=0.2,
|
198 |
+
minimum=0.0,
|
199 |
+
maximum=2.0,
|
200 |
+
step=0.05,
|
201 |
+
interactive=True
|
202 |
+
)
|
203 |
+
|
204 |
+
top_p = gr.Slider(
|
205 |
+
label="top_p",
|
206 |
+
value=1.0,
|
207 |
+
minimum=0.0,
|
208 |
+
maximum=1.0,
|
209 |
+
step=0.01,
|
210 |
+
interactive=True
|
211 |
+
)
|
212 |
+
|
213 |
+
top_k = gr.Slider(
|
214 |
+
label="top_k",
|
215 |
+
value=40,
|
216 |
+
minimum=0,
|
217 |
+
maximum=1000,
|
218 |
+
step=1,
|
219 |
+
interactive=True
|
220 |
)
|
221 |
|
222 |
+
# Function to load model on button click
|
223 |
+
def load_model_fn():
|
224 |
+
m, t = initialize_model()
|
225 |
+
if m is not None and t is not None:
|
226 |
+
return "✅ மாதிரி வெற்றிகரமாக ஏற்றப்பட்டது (Model loaded successfully)", m, t
|
227 |
+
else:
|
228 |
+
return "❌ மாதிரி ஏற்றுவதில் பிழை (Error loading model)", None, None
|
229 |
+
|
230 |
+
# Function to respond to user messages - with error handling
|
231 |
+
def chat_function(message, history, model_state, tokenizer_state, temp, tp, tk):
|
232 |
+
if not message.strip():
|
233 |
+
return "", history
|
234 |
+
|
235 |
+
try:
|
236 |
+
# Check if model is loaded
|
237 |
+
if model_state is None:
|
238 |
+
bot_message = "மாதிரி ஏற்றப்படவில்லை. முதலில் 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்."
|
239 |
+
else:
|
240 |
+
# Generate bot response with parameters
|
241 |
+
bot_message = generate_response(
|
242 |
+
model_state,
|
243 |
+
tokenizer_state,
|
244 |
+
message,
|
245 |
+
history,
|
246 |
+
temperature=temp,
|
247 |
+
top_p=tp,
|
248 |
+
top_k=tk
|
249 |
+
)
|
250 |
+
|
251 |
+
# Create new history entry
|
252 |
+
new_history = history + [(message, bot_message)]
|
253 |
+
return "", new_history
|
254 |
+
|
255 |
+
except Exception as e:
|
256 |
+
logger.error(f"Chat function error: {e}", exc_info=True)
|
257 |
+
return "", history + [(message, f"Error: {str(e)}")]
|
258 |
+
|
259 |
+
# Create the chat interface
|
260 |
+
chatbot = gr.Chatbot()
|
261 |
+
msg = gr.TextArea(
|
262 |
+
placeholder="உங்கள் செய்தி இங்கே தட்டச்சு செய்யவும் (Type your message here...)",
|
263 |
+
lines=3
|
264 |
+
)
|
265 |
+
clear = gr.Button("அழி (Clear)")
|
266 |
+
|
267 |
+
# Set up the chat interface
|
268 |
+
msg.submit(
|
269 |
+
chat_function,
|
270 |
+
[msg, chatbot, model, tokenizer, temperature, top_p, top_k],
|
271 |
+
[msg, chatbot]
|
272 |
+
)
|
273 |
+
|
274 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
275 |
+
|
276 |
+
# Connect the model loading button
|
277 |
+
load_model_btn.click(
|
278 |
+
load_model_fn,
|
279 |
+
outputs=[model_status, model, tokenizer]
|
280 |
+
)
|
281 |
+
|
282 |
return demo
|
283 |
|
284 |
# Create and launch the demo
|
|
|
286 |
|
287 |
# Launch the demo
|
288 |
if __name__ == "__main__":
|
289 |
+
demo.queue(concurrency_count=1).launch()
|