import gradio as gr from huggingface_hub import InferenceClient import json import uuid from PIL import Image from bs4 import BeautifulSoup import requests import random from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer from threading import Thread import re import time import torch import cv2 from gradio_client import Client, file def image_gen(prompt): client = Client("KingNish/Image-Gen-Pro") return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro") model_id = "llava-hf/llava-interleave-qwen-0.5b-hf" processor = LlavaProcessor.from_pretrained(model_id) model = LlavaForConditionalGeneration.from_pretrained(model_id) model.to("cpu") def llava(message, history): if message["files"]: image = message["files"][0] else: for hist in history: if type(hist[0]) == tuple: image = hist[0][0] txt = message["text"] gr.Info("Analyzing image") image = Image.open(image).convert("RGB") prompt = f"\n{txt}" inputs = processor(prompt, image, return_tensors="pt") return inputs def extract_text_from_webpage(html_content): soup = BeautifulSoup(html_content, 'html.parser') for tag in soup(["script", "style", "header", "footer"]: tag.extract() visible_text = soup.get_text(strip=True) if len(visible_text) > max_chars_per_page and visible_text.endswith("..."): visible_text = visible_text[:max_chars_per_page] return visible_text def search(query): term = query start = 0 all_results = [] max_chars_per_page = 8000 with requests.Session() as session: resp = session.get( url="https://www.google.com/search", headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, params={"q": term, "num": 3, "udm": 14}, timeout=5, verify=None, ) resp.raise_for_status() soup = BeautifulSoup(resp.text, "html.parser") result_block = soup.find_all("div", attrs={"class": "g"}) for result in result_block: link = result.find("a", href=True) link = link["href"] try: webpage = session.get(link, headers={ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False) webpage.raise_for_status() visible_text = extract_text_from_webpage(webpage.text) if len(visible_text) > max_chars_per_page: visible_text = visible_text[:max_chars_per_page] all_results.append({"link": link, "text": visible_text}) except requests.exceptions.RequestException: all_results.append({"link": link, "text": None}) return all_results # Initialize inference clients for different models client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") client_yi = InferenceClient("01-ai/Yi-1.5-34B-Chat") # Define the main chat function def respond(message, history): func_caller = [] user_prompt = message # Handle image processing if message["files"]: inputs = llava(message, history) streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer else: functions_metadata = [ {"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": { "query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}, {"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": { "prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}, {"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": { "query": {"type": "string", "description": "image generation prompt"}}, "required": ["query"]}}, {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}, ] for msg in history: func_caller.append({"role": "user", "content": f"{str(msg[0])}"}) func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"}) message_text = message["text"] func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} [USER] {message_text}'}) response = client_gemma.chat_completion(func_caller, max_tokens=200) response = str(response) try: response = response[int(response.find("{")):int(response.rindex("": output += response.token yield output demo = gr.ChatInterface( fn=respond, chatbot=gr.Chatbot( show_copy_button=True, likeable=True, layout="panel", ), description="# OpenGPT 4o \n ### chat, generate images, perform web searches, and Q&A with images.", textbox=gr.MultimodalTextbox(), multimodal=True, concurrency_limit=20, cache_examples=False, theme="default", css= .chat-container { border: 1px solid #ccc; border-radius: 5px; padding: 10px; } .chat-message { background-color: #f0f0f0; padding: 10px; border-radius: 5px; margin-bottom: 10px; } .chat-message.own { background-color: #dff0d8; } .chat-message.own::before { content: 'You'; font-weight: bold; } .chat-message.bot::before { content: 'Bot'; font-weight: bold; } /* Add this to make it look like Hugging Chat v0.9.2 */ .chat-container { background-color: #f0f0f0; padding: 20px; } .chat-message { background-color: #dff0d8; padding: 10px; border-radius: 5px; margin-bottom: 10px; } .chat-message.own { background-color: #dff0d8; } .chat-message.own::before { content: 'You'; font-weight: bold; } .chat-message.bot::before { content: 'Bot'; font-weight: bold; } , ) demo.launch()