Spaces:
Running
Running
File size: 21,221 Bytes
769aa5e 3b8e24a b408c43 769aa5e a03802a 8685c80 a03802a c7c7cf1 a03802a 1285b60 a03802a 41f5bc8 a03802a 330d5fc 8685c80 769aa5e 10a4924 769aa5e 727a052 769aa5e 3b8e24a 769aa5e 10a4924 769aa5e fd9b6a3 5d16948 d87736a b04d69c 9b1ac09 ef1a1ae 3b8e24a ef1a1ae 0d18e86 9b1ac09 769aa5e 9b1ac09 0d18e86 769aa5e ef1a1ae 769aa5e 07c4a28 e2bfee1 07c4a28 e2bfee1 0ce1050 07c4a28 38332c9 07c4a28 fb79d54 e2bfee1 9b1ac09 e2bfee1 9b1ac09 0ce1050 07c4a28 e2bfee1 9b1ac09 0ce1050 9b1ac09 0ce1050 e2bfee1 38332c9 07c4a28 fb79d54 e2bfee1 0ce1050 9b1ac09 e2bfee1 0ce1050 fd99f64 9b1ac09 07c4a28 0ce1050 e2bfee1 9b1ac09 0ce1050 e2bfee1 38332c9 e2bfee1 07c4a28 fb79d54 e2bfee1 0ce1050 9b1ac09 07c4a28 e2bfee1 9b1ac09 e2bfee1 9b1ac09 0ce1050 e2bfee1 0ce1050 9b1ac09 0ce1050 e2bfee1 38332c9 e2bfee1 07c4a28 fb79d54 e2bfee1 9b1ac09 e2bfee1 9b1ac09 0ce1050 07c4a28 e2bfee1 9b1ac09 0ce1050 e2bfee1 9b1ac09 0ce1050 e2bfee1 38332c9 e2bfee1 07c4a28 fb79d54 e2bfee1 9b1ac09 e2bfee1 9b1ac09 e2bfee1 9b1ac09 0ce1050 07c4a28 e2bfee1 9b1ac09 e2bfee1 38332c9 07c4a28 fb79d54 e2bfee1 9b1ac09 e2bfee1 9b1ac09 07c4a28 e2bfee1 9b1ac09 e2bfee1 9b1ac09 0ce1050 e2bfee1 3b8e24a 7bc447d d67ad02 7bc447d d67ad02 e2bfee1 7bc447d 3b8e24a 7bc447d 3b8e24a 7bc447d d67ad02 7bc447d d67ad02 7bc447d 3b8e24a 769aa5e 73ae154 769aa5e 9c97ffe 769aa5e 9c97ffe 769aa5e 9c97ffe 769aa5e 3b8e24a 769aa5e 3b8e24a 769aa5e 3b8e24a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import streamlit as st
from PIL import Image
from streamlit_lottie import st_lottie
import json
import os
import glob
from streamlit_option_menu import option_menu
from projects import display_projects
#setting layout to wide
st.set_page_config(layout="wide")
# Load CSS for styling with a minimalist grey background
with open("style.css") as f:
css_content = f.read()
css_content += '''
body {
background-color: #f0f2f6;
}
'''
st.markdown('<style>{}</style>'.format(css_content), unsafe_allow_html=True)
def load_lottiefile(filepath: str):
with open(filepath, "r") as file:
return json.load(file)
def display_header():
st.write('''
# Nihar Palem
#####
''')
# Assuming you have a Lottie animation to display
lottie_animation = load_lottiefile("bio.json")
st_lottie(lottie_animation, height=300, key="header_animation")
def display_summary():
#st.markdown('## Summary', unsafe_allow_html=True)
st.markdown("""
Hello! I'm **Sai Nihar Reddy Palem**, an Applied AI Engineer, Data Scientist, and AI Researcher based in San Jose, California. Originally from Hyderabad, India, I've embarked on a transformative journey from Electrical Engineering to becoming a passionate AI researcher exploring the frontiers of artificial intelligence.
My path began with a solid engineering foundation, evolved through diverse industry experiences across data engineering and analytics, and reached new heights with my **Master's degree in Applied Data Science** from San Jose State University. Over the past 2+ years, I've immersed myself in the cutting-edge world of multimodal AI, Large Language Model fine-tuning, and multi-agent architectures, consistently pushing the boundaries between theoretical research and practical implementation. Currently, I'm working with Google on bettering their multimodal capabilities, contributing to the advancement of state-of-the-art AI systems.
What drives me is the exciting challenge of systematically translating breakthrough research papers into production-ready solutions that create real-world impact. From achieving 12% performance improvements through advanced LLM optimization techniques to actively participating and learning from technical events like hackathons where I've built innovative multi-agent systems in just 5 hours (most recent), my journey reflects a deep commitment to both research excellence and practical innovation. I've contributed to open-source projects that have garnered 10,000+ community interactions, developed comprehensive evaluation frameworks for state-of-the-art models like Gemini 3.0, and created an applications that democratize AI technology for businesses and individuals alike.
**What You'll Find in This Portfolio**: Education, Work Experience, Projects, Skills, Research Notes, Social Media, Open Source Applications, Awards
""")
def display_education():
st.markdown('## Education')
st.write("""
- **Masters In Data Analytics**, *San Jose State University*, USA (2023-2024)
- Courses: Data Mining, Deep Learning, Big Data Technologies, Data Visualization, Machine Learning, Database Management Systems
- Achievements:
- A Grade in Deep Learning
- **Bachelor of Technology (B.Tech) in Electrical and Electronics Engineering (EEE)**, *Sreenidhi Institute of Science and Technology (SNIST)*, Hyderabad (2015-2019)
- Activities:
- Memeber of the Robotics Club:, built line follower and theft-alert detection bots.
- Member of the college cricket team; Runner up in City-level tournament
""")
def display_work_experience():
st.markdown('## Work Experience')
st.write("""
**Turing, San Jose, CA, USA**
March 2024 - Present
- **Data Scientist & Applied AI Engineer**
- Collaborated with AI engineers, product teams, researchers, and Google DeepMind team to integrate LLM evaluation systems into production workflows using PyTorch and distributed computing
- Engineered comprehensive evaluation benchmarks for Gemini 3.0 by analyzing reasoning loss patterns and image loss patterns in state-of-the-art Vision-Language Models (VLMs) including o3 and Gemini 2.5 Pro, developing custom datasets across multiple domains (mathematics, finance, chemistry, biology) spanning educational levels from high-school through PhD with statistical validation methods
- Implemented advanced LLM fine-tuning strategies for Qwen model including Parameter-Efficient Fine-Tuning (PEFT) with LoRA and 2-stage whole model training on multi-GPU clusters, achieving 12% performance improvement across 15+ categories
- Developed "auto hinter" system to improve LLM reasoning, guiding models towards correct answers based on question complexity, resulting in 8% performance increment on PhD-level questions
- Built "auto rater" system to assess responses from leading models like Gemini 2.5 Pro and o3 custom builds, scoring across four key dimensions: completeness, coherence, clarity, correctness, style and formatting
**San Jose State University, San Jose, CA, USA**
August 2024 - December 2024
- **Teaching Assistant**
- Mentored 80+ graduate students on data modeling projects, providing feedback on technical documentation
- Reviewed and debugged student data pipelines, offering solutions for data analysis and ML model challenges
- Improved student performance, with 75% of mentored students achieving an 'A' grade
-Conducted weekly office hours to assist students with complex data science concepts and project implementations
**Bharat Electronics Limited, Hyderabad, India**
February 2021 - March 2022
- **Data Analyst**
- Optimized SQL queries for sales and payroll databases using indexes and CTEs, reducing execution times by 40%
- Developed and maintained 20+ Tableau dashboards, reducing production costs by 15% and improving sales forecasts by 10%
- Implemented automated billing checks using SQL procedures, reducing financial discrepancies by 30%
- Optimized ETL pipelines with staging tables and data quality checks, increasing ingestion efficiency by 25%
**Technical Writer**
2023-Present
- Embarked on a new journey in 2023 as a technical writer, sharing insights and developments in data science and data engineering with a growing audience.
- Authored numerous articles that explore complex topics in an accessible and informative manner, focusing on AI, data science, machine learning and data engineering.
- This new habit aims to educate and inspire, bridging the gap between technical expertise and practical application in the modern data landscape.
- Find my work on [Medium](https://medium.com/@nihar-palem) and [Substack](https://niharpalem.substack.com/publish/posts).
""")
def display_skills():
st.title('Skills')
# Define tab titles
tab_titles = [
"Programming & Core",
"AI & ML",
"Data Engineering",
"Data Architecture",
"Visualization",
"Specialized Systems",
"Multimodal AI",
"LLM & Advanced AI"
]
# Create tabs
tabs = st.tabs(tab_titles)
# Programming & Core Technologies
with tabs[0]:
st.subheader("Programming & Core Technologies")
st.markdown("""
- **Programming Languages**:
- Python (Advanced)
- SQL (Advanced)
- Shell Scripting
- **Database Systems**:
- Relational: MySQL, PostgreSQL
- NoSQL: MongoDB
- Data Warehouses: Snowflake, Redshift
- Vector Databases: FAISS, Pinecone
- **Development Tools**:
- Version Control: Git, GitHub
- Containerization: Docker
- Orchestration: Kubernetes (Basic)
- IDE: VS Code, PyCharm
- Microsoft Office Suite
- **Frameworks & Libraries**:
- LangChain
- Hugging Face (Transformers, Diffusers)
- Scikit-Learn, Pandas, NumPy
- Apache Spark
""")
# AI & Machine Learning
with tabs[1]:
st.subheader("AI & Machine Learning")
st.markdown("""
- **Machine Learning Frameworks**:
- PyTorch (Advanced, PyTorch Distributed, DDP)
- TensorFlow
- Scikit-Learn
- XGBoost, Random Forest, AdaBoost
- **Deep Learning**:
- Vision Transformers (ViT)
- Vision Language Models
- Large Language Models
- Sentecne Transformers
- Diffusion Models
- ResNet Architectures
- Neural Networks
- BiLSTM
- **Distributed Training**:
- Multi-GPU Clusters (16+ GPUs)
- PyTorch DDP (Distributed Data Parallel)
- DeepSpeed
- Megatron
- CUDA Acceleration
- FlashAttention
- **Computer Vision**:
- MediaPipe
- OpenCV
- Image Processing Pipelines
- Satellite Imagery Analysis
- **Model Optimization**:
- Model Compression (Quantization, Distillation)
- Performance Optimization
- CUDA Programming
- Parallel Processing
""")
# Data Engineering & Cloud
with tabs[2]:
st.subheader("Data Engineering & Cloud")
st.markdown("""
- **Cloud Platforms**:
- AWS (Certified - Lambda, S3, Glue, EC2, Redshift)
- Google Cloud Platform (GCP)
- Cloud Architecture Design
- **Big Data Technologies**:
- Apache Spark (PySpark)
- Apache Airflow
- BigQuery
- Hadoop Ecosystem
- **Data Pipeline Tools**:
- ETL/ELT Pipeline Design
- Workflow Orchestration
- Concurrent Processing
- Real-time Data Streaming
- ThreadPoolExecutor Optimization
- **Infrastructure**:
- CI/CD Pipelines (GitHub Actions)
- Infrastructure as Code
- Kubernetes Basics
- Production Monitoring
- Distributed Training Clusters
""")
# Data Architecture & Analytics
with tabs[3]:
st.subheader("Data Architecture & Analytics")
st.markdown("""
- **Data Modeling**:
- OLAP/OLTP Systems
- Star/Snowflake Schema
- Data Normalization
- Database Optimization
- **Analytics Techniques**:
- Streaming Analytics
- Batch Processing
- Time Series Analysis
- Statistical Analysis
- A/B Testing
- Hypothesis Testing
- **Data Processing**:
- Pandas, NumPy
- Data Wrangling
- Feature Engineering
- Data Quality Assurance
- Data Quality Management
- **Performance Optimization**:
- Query Optimization
- Indexing Strategies
- Caching Mechanisms
- SQL Performance Tuning
""")
# Visualization & Deployment
with tabs[4]:
st.subheader("Visualization & Tools")
st.markdown("""
- **Business Intelligence**:
- Tableau
- Power BI
- Dashboard Design
- KPI Monitoring
- **Technical Visualization**:
- Plotly
- Seaborn
- Matplotlib
- Interactive Charts
- **Deployment & Interface**:
- Streamlit
- Web Development
- Hugging Face Spaces
- **Collaboration Tools**:
- JIRA
- Notion
- Git Workflow
- Agile Methodologies
""")
# Specialized Systems
with tabs[5]:
st.subheader("Specialized Systems")
st.markdown("""
- **Recommender Systems**:
- Hybrid Filtering Techniques
- Content-Based Filtering
- Collaborative Filtering
- Matrix Factorization (SVD)
- **Ensemble Methods**:
- Multi-model Consensus Systems
- Classifier Combinations
- Voting Systems
- Stacking Implementations
- **Performance Optimization**:
- CUDA Acceleration
- Parallel Processing
- Resource Management
- Scalability Design
- **Custom Solutions**:
- Natural Language Processing
- Computer Vision Systems
- Time Series Forecasting
- Anomaly Detection
- Real-time Web Scraping
- Automated Data Quality Checks
""")
# Multimodal AI
with tabs[6]:
st.subheader("Multimodal AI")
st.markdown("""
- **Vision-Language Models**:
- Qwen-VL
- Gemini Multimodal
- Vision-Language Understanding
- Cross-modal Fine-tuning
- Multimodal Evaluation
- **Visual AI**:
- Visual Question Answering (VQA)
- Vision Transformers (ViT)
- Stable Diffusion XL
- Generative AI (Vision)
- Image-Text Alignment
- **Multi-Agent Systems**:
- Multi-Agent Multimodal Workflows
- Strategic Agent Architecture
- Visual Agent Integration
- QA Agent Implementation
- **Evaluation & Testing**:
- Multimodal Benchmarking
- Cross-modal Bias Detection
- Performance Optimization
- Adversarial Testing
- Statistical Validation Methods
""")
# LLM & Advanced AI
with tabs[7]:
st.subheader("LLM & Advanced AI")
st.markdown("""
- **Large Language Models**:
- Fine-tuning (PEFT, LoRA, QLoRA)
- 2-Stage Training
- VLLM/LMMs
- Qwen, LLaMA (Llama-3.1-8B), GPT Integration
- **Advanced Techniques**:
- Prompt Engineering (Advanced, Context Injection)
- RAG (Retrieval-Augmented Generation)
- LLM Evaluation Benchmarking
- LLM-as-judge
- Auto Hinter Systems
- **Production AI Systems**:
- Multi-Agent Systems
- API Integration
- Performance Optimization
- Tenstorrent Hardware Utilization
- MLOps
- **Specialized Applications**:
- Semantic Job Matching
- Resume Generation
- Marketing Campaign Automation
- Infrastructure Change Detection
- Exercise Pose Correction
- **AI Testing & Validation**:
- Unit/Integration Testing for AI
- Offline Evaluation Frameworks
- Model Validation
- ROC Curve Analysis
- RMSE Validation
- Bias Mitigation
""")
def display_articles():
"""Display articles from HTML files in the articles directory"""
st.markdown('## Articles')
# Define the articles directory path
articles_dir = "articles" # You can change this path as needed
# Check if articles directory exists
if not os.path.exists(articles_dir):
st.warning(f"Articles directory '{articles_dir}' not found. Please create the directory and add your HTML files.")
st.info("Create an 'articles' folder in your project directory and add your HTML files there.")
return
# Get all HTML files from the articles directory
html_files = glob.glob(os.path.join(articles_dir, "*.html"))
if not html_files:
st.info("No HTML articles found in the articles directory. Add some .html files to get started!")
return
# Sort files by name for consistent ordering
html_files.sort()
st.markdown("Click on any article below to view:")
st.markdown("") # Add some space
# Display each article as a clean clickable card
for i, html_file in enumerate(html_files):
# Extract filename without path and extension, format it nicely
file_name = os.path.splitext(os.path.basename(html_file))[0]
display_name = file_name.replace('_', ' ').replace('-', ' ').title()
# Get file size
try:
file_size = os.path.getsize(html_file)
size_kb = round(file_size / 1024, 1)
size_text = f"{size_kb} KB"
except:
size_text = "- KB"
# Create a clean card-like button
article_clicked = st.button(
f"📄 {display_name} ({size_text})",
key=f"article_{i}",
use_container_width=True
)
if article_clicked:
try:
with open(html_file, 'r', encoding='utf-8') as file:
html_content = file.read()
# Display article content inline
st.markdown("---")
st.markdown(f"### {display_name}")
# Add download option
col1, col2 = st.columns([1, 4])
with col1:
st.download_button(
label="⬇️ Download",
data=html_content,
file_name=os.path.basename(html_file),
mime="text/html",
key=f"download_clicked_{i}"
)
with col2:
if st.button("❌ Close Article", key=f"close_{i}"):
st.rerun()
# Display the HTML content
st.components.v1.html(html_content, height=600, scrolling=True)
except Exception as e:
st.error(f"Error loading article: {str(e)}")
# Add small spacing between articles
st.markdown("")
def display_apps():
st.markdown('## Apps')
st.markdown("""
- [CNN arch](https://cnn-arch.streamlit.app/)
""")
st.markdown("""
- [TuNNe](https://huggingface.co/spaces/Niharmahesh/TuNNe)
""")
def display_certifications():
st.markdown('## Certifications')
certifications = [
{"title": "Python for Data Science and Machine Learning Bootcamp", "issuer": "Udemy", "date": "2023", "skills": "Python, Data Science, Machine Learning"},
{"title": "HackerRank SQL (Basic)", "issuer": "HackerRank", "date": "2023", "skills": "SQL, Database Management"},
{"title": "AWS Cloud Practitioner", "issuer": "Udemy", "date": "2023", "skills": "Cloud Computing, AWS Services"},
{"title": "AWS Certified Cloud Practitioner", "issuer": "Amazon Web Services", "date": "2023", "skills": "Cloud Architecture, AWS Best Practices"}
]
for cert in certifications:
with st.expander(cert["title"]):
st.write(f"**Issuer:** {cert['issuer']}")
st.write(f"**Date:** {cert['date']}")
st.write(f"**Skills:** {cert['skills']}")
def display_social_media():
st.markdown('## Social Media')
st.markdown("""
- [LinkedIn](https://www.linkedin.com/in/sai-nihar-1b955a183/)
- [GitHub](https://github.com/niharpalem)
- [Medium](https://medium.com/@nihar-palem)
- [Twitter](https://twitter.com/niharpalem_2497)
- [Email](mailto:sainiharreddy.palem@sjsu.edu)
""")
# Updated menu with articles section
menu_items_with_icons = {
"🎓": display_education,
"💼": display_work_experience,
"📁": display_projects,
"🛠️": display_skills,
"📝": display_articles, # New articles section
"🌐": display_social_media,
"🏆": display_certifications,
"📱": display_apps
}
def main():
# Initialize session state for selected function
if 'selected_function' not in st.session_state:
st.session_state.selected_function = None # Default to None to not display any section initially
# Display the header with your name and Lottie animation first
display_header()
# Display the summary section immediately after the header
display_summary()
# Create a row of buttons for each icon in the menu
cols = st.columns(len(menu_items_with_icons))
for col, (icon, func) in zip(cols, menu_items_with_icons.items()):
if col.button(icon):
# Update the session state to the selected function
st.session_state.selected_function = func
# If a function has been selected, call it
if st.session_state.selected_function is not None:
st.session_state.selected_function()
if __name__ == "__main__":
main() |