File size: 6,063 Bytes
5ad4868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import librosa\n",
    "import soundfile as sf\n",
    "import numpy as np\n",
    "from os import listdir\n",
    "from os.path import isfile, join\n",
    "from math import floor\n",
    "import IPython.display as ipd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Data from [ESC-50](https://github.com/karolpiczak/ESC-50)  \n",
    "And [freesound.org](freesound.org)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from scipy.signal import butter, lfilter\n",
    "\n",
    "def apply_lowpass_filter(x, sr):\n",
    "    order = 10\n",
    "    cutoff = 2000\n",
    "    b, a = butter(order, cutoff, fs=sr, btype='low', analog=False)\n",
    "    y = lfilter(b, a, x)\n",
    "    return y"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def downsample(x, sr, newsr):\n",
    "    return x[::floor(sr/newsr)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def play(x, sr):\n",
    "    ipd.display(ipd.Audio(data=x, rate=sr))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# crop a single file (if end by silence)\n",
    "# file=\"751913__spaudiobooks__chainsaw-in-a-forest\"\n",
    "# ext=\".wav\"\n",
    "# data, sr = librosa.load(dirpath+file+ext)\n",
    "# data = data[:sr*(60+31)]\n",
    "# sf.write(dirpath+file+\".wav\", data, sr)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# read, filter, downsample, chunk by 3s length, write wav\n",
    "newsr=4000\n",
    "c=2550\n",
    "dirpath = \"../datasets/freesound/chainsaw/audio/long\"\n",
    "for file in listdir(dirpath):\n",
    "    if isfile(join(dirpath, file)):\n",
    "        print(file)\n",
    "        data, sr = librosa.load(dirpath+file)\n",
    "        #play(data, sr)\n",
    "        data = apply_lowpass_filter(data, sr)\n",
    "        data = downsample(data, sr, newsr)\n",
    "        cutpoints = list(range(3*newsr,len(data),3*newsr))\n",
    "        all_data = np.split(data, cutpoints)\n",
    "        for d in all_data:\n",
    "            if (len(d) > 1024):\n",
    "                sf.write(dirpath+f'curated/{c}.wav', d, 4000)\n",
    "                c+=1\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# detect too short files\n",
    "# dirpath = \"../datasets/freesound/environment/audio/curated/\"\n",
    "# for file in listdir(dirpath):\n",
    "#     if isfile(join(dirpath, file)):\n",
    "#         data, sr = librosa.load(dirpath+file)\n",
    "#         if (len(data)<=1024):\n",
    "#             print(file, len(data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ESC-50\n",
    "# attenuate, mix with background\n",
    "from random import randint, uniform\n",
    "\n",
    "c=0\n",
    "newsr=4000\n",
    "dirpath = \"../datasets/freesound/chainsaw/audio/\"\n",
    "envdir = \"../datasets/freesound/environment/audio/\"\n",
    "envfiles = [file for file in listdir(envdir) if isfile(join(envdir, file))]\n",
    "for file in listdir(dirpath):\n",
    "    if isfile(join(dirpath, file)):\n",
    "        print(file)\n",
    "        data, sr = librosa.load(dirpath+file)\n",
    "        #play(data, sr)\n",
    "        lastindexes=[]\n",
    "        for i in range(3):\n",
    "            index = randint(0, len(envfiles)-1)\n",
    "            while (index in lastindexes):\n",
    "                index = randint(0, len(envfiles)-1)\n",
    "            lastindexes.append(index)\n",
    "            addfile = envfiles[index]\n",
    "            data2, sr2 = librosa.load(envdir+addfile)\n",
    "            data1 = apply_lowpass_filter(data, sr)\n",
    "            data2 = apply_lowpass_filter(data2, sr2)\n",
    "            data1 = downsample(data1, sr, newsr)\n",
    "            data2 = downsample(data2, sr2, newsr)\n",
    "            attenuation = round(uniform(0.2, 0.5), 2)\n",
    "            data1 = (data1 * attenuation + data2 *(1-attenuation))/2\n",
    "            all_data = np.split(data1, [round(len(data1)/2)])\n",
    "            for d in all_data:\n",
    "                sf.write(dirpath+f'test/mix-{c}.wav', d, 4000)\n",
    "                c+=1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [],
   "source": [
    "# environment audio from ESC-50, filter, downsample and half the files (they are 5 sec long)\n",
    "newsr=4000\n",
    "c=2649\n",
    "dirpath = \"../datasets/freesound/environment/audio/\"\n",
    "for file in listdir(dirpath):\n",
    "    if isfile(join(dirpath, file)):\n",
    "        data, sr = librosa.load(dirpath+file)\n",
    "        data = apply_lowpass_filter(data, sr)\n",
    "        data = downsample(data, sr, newsr)\n",
    "        all_data = np.split(data, [round(len(data)/2)])\n",
    "        for d in all_data:\n",
    "            # random time shift\n",
    "            rand_zeros = np.zeros(randint(0, 1900))\n",
    "            d = np.append(rand_zeros, d)\n",
    "            sf.write(dirpath+f'curated/e-{c}.wav', d, 4000)\n",
    "            c+=1"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "audio-processing",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}