File size: 3,573 Bytes
4d6e8c2
fe4a4cb
 
3b09640
5ad4868
fe4a4cb
4d6e8c2
fe4a4cb
5ad4868
 
4d6e8c2
3b09640
 
 
4d6e8c2
 
0388c00
1c33274
70f5f26
fe4a4cb
5ad4868
4d6e8c2
 
fe4a4cb
70f5f26
5ad4868
 
4d6e8c2
fe4a4cb
4d6e8c2
fe4a4cb
 
 
 
 
 
0388c00
fe4a4cb
3b09640
5ad4868
 
 
 
 
 
 
 
 
baff0a5
5ad4868
360633d
 
fe4a4cb
 
 
 
 
 
 
 
 
5ad4868
360633d
5ad4868
 
 
 
360633d
 
 
fe4a4cb
 
 
 
 
 
 
 
360633d
fe4a4cb
 
 
4d6e8c2
 
fe4a4cb
70f5f26
fe4a4cb
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
fe4a4cb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import os
import torch

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.preprocess import get_dataloader
from .models.model import ChainsawDetector

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "ChainsawDetector"
ROUTE = "/audio"


@router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.
    
    Current Model: ChainsawDetector
    - STFT -> PCEN -> split into small time chunks -> CNN+LSTM for each chunk -> dense -> prediction
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }

    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    batch_size = 16
    device = "cuda" if torch.cuda.is_available() else "cpu"
    split='test'
    test_dataset = load_dataset(request.dataset_name, split=split, token=os.getenv("HF_TOKEN"))
    dataloader = get_dataloader(test_dataset, device, batch_size=batch_size, shuffle=False)

    # Load model
    model = ChainsawDetector(batch_size).to(device, dtype=torch.bfloat16)
    model = torch.compile(model)
    model.load_state_dict(torch.load('tasks/models/final-bf16.pth', weights_only=True))
    model.eval()
    num_correct = 0
    num_samples = len(test_dataset)
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    predictions = []
    with torch.no_grad():
        for (X, y) in dataloader:
            X = X.to(device, dtype=torch.bfloat16)
            y = y.to(device, dtype=torch.bfloat16)
            
            predictions = model(X)
            num_correct += (y==predictions).sum()  # count correct predictions

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = float(num_correct) / float(num_samples)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results