Spaces:
Sleeping
Sleeping
File size: 9,749 Bytes
132f0a2 57cf1ec 132f0a2 5f9b6f1 132f0a2 5f9b6f1 132f0a2 5f9b6f1 132f0a2 5f9b6f1 132f0a2 5f9b6f1 132f0a2 5f9b6f1 132f0a2 5f9b6f1 132f0a2 5f9b6f1 132f0a2 5f9b6f1 57cf1ec 132f0a2 57cf1ec 132f0a2 8a7cf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# app.py
import gradio as gr
import os
import re
import shutil
import torch
from langchain_community.document_loaders import ArxivLoader, PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# --- Configuration ---
ARXIV_DIR = "./arxiv_papers" # Directory to save downloaded papers
CHUNK_SIZE = 500 # Characters per chunk
CHUNK_OVERLAP = 50 # Overlap between chunks
EMBEDDING_MODEL_NAME = 'all-MiniLM-L6-v2'
LLM_MODEL_NAME = "google/flan-t5-small"
# --- RAGAgent Class ---
class RAGAgent:
def __init__(self):
self.embedding_model = None
self.llm = None
self.vectorstore = None
self.qa_chain = None
self.is_initialized = False
def _load_models(self):
"""Loads the embedding and generation models if not already loaded."""
if self.embedding_model is None:
print(f"Loading Embedding Model: {EMBEDDING_MODEL_NAME}...")
self.embedding_model = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
if self.llm is None:
print(f"Loading LLM Model: {LLM_MODEL_NAME}...")
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(LLM_MODEL_NAME)
# Determine device for pipeline
device = 0 if torch.cuda.is_available() else -1
# Create a Hugging Face pipeline for text generation
text_generation_pipeline = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=150, # Set a default max_new_tokens for the pipeline
min_length=20,
num_beams=5,
early_stopping=True,
device=device
)
self.llm = HuggingFacePipeline(pipeline=text_generation_pipeline)
self.is_initialized = True
def initialize_knowledge_base(self, arxiv_query: str, max_papers: int = 5) -> str:
"""
Initializes the knowledge base by downloading, extracting, and chunking
arXiv papers using LangChain components, then building a FAISS vectorstore.
"""
self._load_models() # Ensure models are loaded first
# Clear existing papers before downloading new ones
if os.path.exists(ARXIV_DIR):
shutil.rmtree(ARXIV_DIR)
os.makedirs(ARXIV_DIR, exist_ok=True)
self.vectorstore = None
self.qa_chain = None
print(f"Searching arXiv for '{arxiv_query}' and downloading up to {max_papers} papers...")
try:
# Use LangChain's ArxivLoader
# ArxivLoader downloads PDFs to a temporary directory by default,
# but we can specify a custom path to ensure cleanup.
# For simplicity, we'll let it download to its default temp dir
# and then process. Or, we can manually download and use PyPDFLoader.
# Let's stick to manual download for better control and consistency with previous code.
# Manual download using arxiv library (as it offers more control over filenames)
search_results = arxiv.Search(
query=arxiv_query,
max_results=max_papers,
sort_by=arxiv.SortCriterion.Relevance,
sort_order=arxiv.SortOrder.Descending
)
pdf_paths = []
for i, result in enumerate(search_results.results()):
try:
safe_title = re.sub(r'[\\/:*?"<>|]', '', result.title)
filename = f"{ARXIV_DIR}/{safe_title[:100]}_{result.arxiv_id}.pdf"
print(f"Downloading paper {i+1}/{max_papers}: {result.title}")
result.download_pdf(filename=filename)
pdf_paths.append(filename)
except Exception as e:
print(f"Could not download {result.title}: {e}")
if not pdf_paths:
return "No papers found or downloaded for the given query. Please try a different query."
# Load documents from downloaded PDFs using PyPDFLoader
all_documents = []
for pdf_path in pdf_paths:
try:
loader = PyPDFLoader(pdf_path)
all_documents.extend(loader.load())
except Exception as e:
print(f"Error loading PDF {pdf_path}: {e}")
if not all_documents:
return "Could not load any documents from downloaded PDFs. Please try a different query or fewer papers."
print(f"Loaded {len(all_documents)} raw documents from PDFs.")
# Split documents into chunks using RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
length_function=len,
is_separator_regex=False,
)
self.knowledge_base_chunks = text_splitter.split_documents(all_documents)
if not self.knowledge_base_chunks:
return "No meaningful text chunks could be created from the papers after splitting."
print(f"Total chunks created: {len(self.knowledge_base_chunks)}")
# Create FAISS vectorstore from chunks and embeddings
print("Creating FAISS vectorstore from chunks...")
self.vectorstore = FAISS.from_documents(self.knowledge_base_chunks, self.embedding_model)
print(f"FAISS vectorstore created with {len(self.knowledge_base_chunks)} documents.")
# Create RetrievalQA chain
self.qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff", # "stuff" puts all retrieved docs into one prompt
retriever=self.vectorstore.as_retriever(search_kwargs={"k": 3}), # Retrieve top 3 docs
return_source_documents=False # Set to True if you want to return source docs
)
return f"Knowledge base loaded with {len(self.knowledge_base_chunks)} chunks from {len(pdf_paths)} arXiv papers on '{arxiv_query}'."
except Exception as e:
print(f"Error during knowledge base initialization: {e}")
return f"An error occurred during knowledge base initialization: {e}"
def query_agent(self, query: str) -> str:
"""
Retrieves relevant information from the knowledge base and generates an answer
using the LangChain RetrievalQA chain.
"""
if not query.strip():
return "Please enter a question."
if not self.is_initialized or self.qa_chain is None:
return "Knowledge base not loaded. Please initialize it by providing an arXiv query."
print(f"\n--- Querying LLM with LangChain QA Chain ---\nQuestion: {query}\n----------------------")
try:
# Use the RetrievalQA chain to get the answer
result = self.qa_chain.invoke({"query": query})
answer = result["result"].strip()
except Exception as e:
print(f"Error during generation: {e}")
answer = "I apologize, but I encountered an error while generating the answer. Please try again or rephrase your question."
return answer
# --- Gradio Interface ---
# Instantiate the RAGAgent
rag_agent_instance = RAGAgent()
print("Setting up Gradio interface...")
with gr.Blocks() as demo:
gr.Markdown("# 📚 Educational RAG Agent with arXiv Knowledge Base (LangChain)")
gr.Markdown("First, load a knowledge base by specifying an arXiv search query. Then, ask questions!")
with gr.Row():
arxiv_input = gr.Textbox(
label="arXiv Search Query (e.g., 'Large Language Models', 'Reinforcement Learning')",
placeholder="Enter a topic to search for papers on arXiv...",
lines=1
)
max_papers_slider = gr.Slider(
minimum=1,
maximum=10,
step=1,
value=3,
label="Max Papers to Download"
)
load_kb_button = gr.Button("Load Knowledge Base from arXiv")
kb_status_output = gr.Textbox(label="Knowledge Base Status", interactive=False)
with gr.Row():
question_input = gr.Textbox(
lines=3,
placeholder="Ask a question based on the loaded arXiv papers...",
label="Your Question"
)
answer_output = gr.Textbox(label="Answer", lines=7, interactive=False)
submit_button = gr.Button("Get Answer")
load_kb_button.click(
fn=rag_agent_instance.initialize_knowledge_base, # Call method of instance
inputs=[arxiv_input, max_papers_slider],
outputs=kb_status_output
)
submit_button.click(
fn=rag_agent_instance.query_agent, # Call method of instance
inputs=question_input,
outputs=answer_output
)
gr.Examples(
examples=[
["What is the transformer architecture?"],
["Explain attention mechanisms in deep learning."],
["What are the challenges in reinforcement learning?"],
],
inputs=question_input
)
# Launch the Gradio app
if __name__ == "__main__":
print("Launching Gradio app...")
demo.launch(share=False) |