Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
import random
|
4 |
import os
|
5 |
-
import zipfile
|
6 |
import librosa
|
7 |
import time
|
8 |
from infer_rvc_python import BaseLoader
|
@@ -12,46 +12,18 @@ import edge_tts
|
|
12 |
import tempfile
|
13 |
from audio_separator.separator import Separator
|
14 |
import model_handler
|
15 |
-
import
|
16 |
-
import
|
|
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
voice = language_dict[language_code]
|
22 |
-
communicate = edge_tts.Communicate(text, voice)
|
23 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
24 |
-
tmp_path = tmp_file.name
|
25 |
-
|
26 |
-
await communicate.save(tmp_path)
|
27 |
-
|
28 |
-
return tmp_path
|
29 |
-
|
30 |
-
try:
|
31 |
-
import spaces
|
32 |
-
spaces_status = True
|
33 |
-
except ImportError:
|
34 |
-
spaces_status = False
|
35 |
-
|
36 |
-
separator = Separator()
|
37 |
-
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
|
38 |
-
|
39 |
-
global pth_file
|
40 |
-
global index_file
|
41 |
-
|
42 |
-
pth_file = "model.pth"
|
43 |
-
index_file = "model.index"
|
44 |
-
|
45 |
-
#CONFIGS
|
46 |
TEMP_DIR = "temp"
|
47 |
MODEL_PREFIX = "model"
|
48 |
-
PITCH_ALGO_OPT = [
|
49 |
-
"pm",
|
50 |
-
"harvest",
|
51 |
-
"crepe",
|
52 |
-
"rmvpe",
|
53 |
-
"rmvpe+",
|
54 |
-
]
|
55 |
UVR_5_MODELS = [
|
56 |
{"model_name": "BS-Roformer-Viperx-1297", "checkpoint": "model_bs_roformer_ep_317_sdr_12.9755.ckpt"},
|
57 |
{"model_name": "MDX23C-InstVoc HQ 2", "checkpoint": "MDX23C-8KFFT-InstVoc_HQ_2.ckpt"},
|
@@ -63,130 +35,78 @@ UVR_5_MODELS = [
|
|
63 |
MODELS = [
|
64 |
{"model": "model.pth", "index": "model.index", "model_name": "Test Model"},
|
65 |
]
|
|
|
|
|
66 |
|
67 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
def progress_bar(total, current):
|
77 |
-
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
|
78 |
-
|
79 |
-
def contains_bad_word(text, bad_words):
|
80 |
-
text_lower = text.lower()
|
81 |
-
for word in bad_words:
|
82 |
-
if word.lower() in text_lower:
|
83 |
-
return True
|
84 |
-
return False
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
class BadWordError(Exception):
|
89 |
-
|
90 |
-
super().__init__(msg)
|
91 |
-
self.word = word
|
92 |
|
93 |
-
def
|
94 |
-
if
|
95 |
-
raise ValueError("
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
if contains_bad_word(name, bad_words):
|
103 |
-
return BadWordError("The file name has a bad word.")
|
104 |
-
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
|
105 |
-
response = requests.get(url)
|
106 |
-
total = int(response.headers.get('content-length', 0))
|
107 |
-
if total > 500000000:
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
try:
|
120 |
-
|
|
|
121 |
except Exception as e:
|
122 |
-
|
|
|
|
|
123 |
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
124 |
-
pth_files = []
|
125 |
-
index_files = []
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
pth_files.append(os.path.join(root, file))
|
130 |
-
elif file.endswith(".index"):
|
131 |
-
index_files.append(os.path.join(root, file))
|
132 |
|
133 |
-
print(pth_files, index_files)
|
134 |
-
global pth_file
|
135 |
-
global index_file
|
136 |
pth_file = pth_files[0]
|
137 |
index_file = index_files[0]
|
138 |
-
|
139 |
-
print(pth_file)
|
140 |
-
print(index_file)
|
141 |
-
|
142 |
-
if name == "":
|
143 |
-
name = pth_file.split(".")[0]
|
144 |
-
|
145 |
MODELS.append({"model": pth_file, "index": index_file, "model_name": name})
|
146 |
-
return ["Downloaded as "
|
147 |
-
|
148 |
-
def inference(audio, model_name):
|
149 |
-
output_data = inf_handler(audio, model_name)
|
150 |
-
vocals = output_data[0]
|
151 |
-
inst = output_data[1]
|
152 |
-
|
153 |
-
return vocals, inst
|
154 |
-
|
155 |
-
if spaces_status:
|
156 |
-
@spaces.GPU()
|
157 |
-
def convert_now(audio_files, random_tag, converter):
|
158 |
-
return converter(
|
159 |
-
audio_files,
|
160 |
-
random_tag,
|
161 |
-
overwrite=False,
|
162 |
-
parallel_workers=8
|
163 |
-
)
|
164 |
-
|
165 |
-
|
166 |
-
else:
|
167 |
-
def convert_now(audio_files, random_tag, converter):
|
168 |
-
return converter(
|
169 |
-
audio_files,
|
170 |
-
random_tag,
|
171 |
-
overwrite=False,
|
172 |
-
parallel_workers=8
|
173 |
-
)
|
174 |
-
|
175 |
-
def calculate_remaining_time(epochs, seconds_per_epoch):
|
176 |
-
total_seconds = epochs * seconds_per_epoch
|
177 |
-
|
178 |
-
hours = total_seconds // 3600
|
179 |
-
minutes = (total_seconds % 3600) // 60
|
180 |
-
seconds = total_seconds % 60
|
181 |
|
182 |
-
|
183 |
-
return f"{int(minutes)} minutes"
|
184 |
-
elif hours == 1:
|
185 |
-
return f"{int(hours)} hour and {int(minutes)} minutes"
|
186 |
-
else:
|
187 |
-
return f"{int(hours)} hours and {int(minutes)} minutes"
|
188 |
-
|
189 |
-
def inf_handler(audio, model_name):
|
190 |
model_found = False
|
191 |
for model_info in UVR_5_MODELS:
|
192 |
if model_info["model_name"] == model_name:
|
@@ -196,60 +116,27 @@ def inf_handler(audio, model_name):
|
|
196 |
if not model_found:
|
197 |
separator.load_model()
|
198 |
output_files = separator.separate(audio)
|
199 |
-
|
200 |
-
inst = output_files[1]
|
201 |
-
return vocals, inst
|
202 |
|
203 |
-
|
204 |
-
def run(
|
205 |
-
model,
|
206 |
-
audio_files,
|
207 |
-
pitch_alg,
|
208 |
-
pitch_lvl,
|
209 |
-
index_inf,
|
210 |
-
r_m_f,
|
211 |
-
e_r,
|
212 |
-
c_b_p,
|
213 |
-
):
|
214 |
if not audio_files:
|
215 |
-
raise ValueError("
|
216 |
-
|
217 |
if isinstance(audio_files, str):
|
218 |
audio_files = [audio_files]
|
219 |
-
|
220 |
-
|
221 |
-
duration_base = librosa.get_duration(filename=audio_files[0])
|
222 |
-
print("Duration:", duration_base)
|
223 |
-
except Exception as e:
|
224 |
-
print(e)
|
225 |
-
|
226 |
-
random_tag = "USER_"+str(random.randint(10000000, 99999999))
|
227 |
-
|
228 |
file_m = model
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
print(model)
|
235 |
-
file_m = model["model"]
|
236 |
-
file_index = model["index"]
|
237 |
break
|
238 |
|
239 |
if not file_m.endswith(".pth"):
|
240 |
-
raise ValueError("
|
241 |
-
|
242 |
-
|
243 |
-
print("ILARIA RVC: mod by NeoDev 💖")
|
244 |
-
print("Random tag:", random_tag)
|
245 |
-
print("File model:", file_m)
|
246 |
-
print("Pitch algorithm:", pitch_alg)
|
247 |
-
print("Pitch level:", pitch_lvl)
|
248 |
-
print("File index:", file_index)
|
249 |
-
print("Index influence:", index_inf)
|
250 |
-
print("Respiration median filtering:", r_m_f)
|
251 |
-
print("Envelope ratio:", e_r)
|
252 |
-
|
253 |
converter.apply_conf(
|
254 |
tag=random_tag,
|
255 |
file_model=file_m,
|
@@ -260,249 +147,109 @@ def run(
|
|
260 |
respiration_median_filtering=r_m_f,
|
261 |
envelope_ratio=e_r,
|
262 |
consonant_breath_protection=c_b_p,
|
263 |
-
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
|
264 |
)
|
265 |
time.sleep(0.1)
|
266 |
-
|
267 |
result = convert_now(audio_files, random_tag, converter)
|
268 |
-
print("Result:", result)
|
269 |
-
|
270 |
return result[0]
|
271 |
|
272 |
-
def
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
gr.Markdown("# Ilaria RVC 💖")
|
282 |
-
gr.Markdown("
|
283 |
-
with gr.Tab("Inference"):
|
284 |
-
|
285 |
-
def update():
|
286 |
-
print(MODELS)
|
287 |
-
return gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],)
|
288 |
-
with gr.Row(equal_height=True):
|
289 |
-
models_dropdown = gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],)
|
290 |
-
refresh_button = gr.Button("Refresh Models")
|
291 |
-
refresh_button.click(update, outputs=[models_dropdown])
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
button_tts = gr.Button("Speak", variant="primary",)
|
300 |
-
button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=[sound_gui])
|
301 |
|
302 |
-
|
303 |
-
pitch_algo_conf = gr.Radio(choices=[PITCH_ALGO_OPT],value=PITCH_ALGO_OPT[4],label="Pitch algorithm",visible=True,interactive=True) # Dropdown is 🤡
|
304 |
-
with gr.Row(equal_height=True):
|
305 |
-
pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')",minimum=-24,maximum=24,step=1,value=0,visible=True,interactive=True,)
|
306 |
-
index_inf_conf = gr.Slider(minimum=0,maximum=1,label="Index influence -> How much accent is applied",value=0.75,)
|
307 |
-
with gr.Row(equal_height=True):
|
308 |
-
respiration_filter_conf = gr.Slider(minimum=0,maximum=7,label="Respiration median filtering",value=3,step=1,interactive=True,)
|
309 |
-
envelope_ratio_conf = gr.Slider(minimum=0,maximum=1,label="Envelope ratio",value=0.25,interactive=True,)
|
310 |
-
consonant_protec_conf = gr.Slider(minimum=0,maximum=0.5,label="Consonant breath protection",value=0.5,interactive=True,)
|
311 |
|
312 |
-
with gr.
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
button_conf.click(
|
318 |
-
run,
|
319 |
-
inputs=[
|
320 |
-
models_dropdown,
|
321 |
-
sound_gui,
|
322 |
-
pitch_algo_conf,
|
323 |
-
pitch_lvl_conf,
|
324 |
-
index_inf_conf,
|
325 |
-
respiration_filter_conf,
|
326 |
-
envelope_ratio_conf,
|
327 |
-
consonant_protec_conf,
|
328 |
-
],
|
329 |
-
outputs=[output_conf],
|
330 |
-
)
|
331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
gr.
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
346 |
index_file_upload = gr.File(label="Index File (.index)")
|
347 |
pth_file_upload = gr.File(label="Model File (.pth)")
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
with gr.Tab("Vocal Separator (UVR)"):
|
357 |
-
gr.Markdown("Separate vocals and instruments from an audio file using UVR models. - This is only on CPU due to ZeroGPU being ZeroGPU :(")
|
358 |
-
uvr5_audio_file = gr.Audio(label="Audio File",type="filepath")
|
359 |
-
|
360 |
with gr.Row():
|
361 |
-
uvr5_model = gr.Dropdown(label="Model", choices=[
|
362 |
-
uvr5_button = gr.Button("Separate
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
uvr5_button.click(inference, [uvr5_audio_file, uvr5_model], [uvr5_output_voc, uvr5_output_inst])
|
368 |
-
|
369 |
-
with gr.Tab("Extra"):
|
370 |
-
with gr.Accordion("Model Information", open=False):
|
371 |
-
def json_to_markdown_table(json_data):
|
372 |
-
table = "| Key | Value |\n| --- | --- |\n"
|
373 |
-
for key, value in json_data.items():
|
374 |
-
table += f"| {key} | {value} |\n"
|
375 |
-
return table
|
376 |
-
def model_info(name):
|
377 |
-
for model in MODELS:
|
378 |
-
if model["model_name"] == name:
|
379 |
-
print(model["model"])
|
380 |
-
info = model_handler.model_info(model["model"])
|
381 |
-
info2 = {
|
382 |
-
"Model Name": model["model_name"],
|
383 |
-
"Model Config": info['config'],
|
384 |
-
"Epochs Trained": info['epochs'],
|
385 |
-
"Sample Rate": info['sr'],
|
386 |
-
"Pitch Guidance": info['f0'],
|
387 |
-
"Model Precision": info['size'],
|
388 |
-
}
|
389 |
-
return gr.Markdown(json_to_markdown_table(info2))
|
390 |
-
|
391 |
-
return "Model not found"
|
392 |
-
def update():
|
393 |
-
print(MODELS)
|
394 |
-
return gr.Dropdown(label="Model", choices=[model["model_name"] for model in MODELS])
|
395 |
-
with gr.Row():
|
396 |
-
model_info_dropdown = gr.Dropdown(label="Model", choices=[model["model_name"] for model in MODELS])
|
397 |
-
refresh_button = gr.Button("Refresh Models")
|
398 |
-
refresh_button.click(update, outputs=[model_info_dropdown])
|
399 |
-
model_info_button = gr.Button("Get Model Information")
|
400 |
-
model_info_output = gr.Textbox(value="Waiting...",label="Output", interactive=False)
|
401 |
-
model_info_button.click(model_info, [model_info_dropdown], [model_info_output])
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
with gr.Accordion("Training Time Calculator", open=False):
|
406 |
-
with gr.Column():
|
407 |
-
epochs_input = gr.Number(label="Number of Epochs")
|
408 |
-
seconds_input = gr.Number(label="Seconds per Epoch")
|
409 |
-
calculate_button = gr.Button("Calculate Time Remaining")
|
410 |
-
remaining_time_output = gr.Textbox(label="Remaining Time", interactive=False)
|
411 |
-
|
412 |
-
calculate_button.click(calculate_remaining_time,inputs=[epochs_input, seconds_input],outputs=[remaining_time_output])
|
413 |
-
|
414 |
-
with gr.Accordion("Model Fusion", open=False):
|
415 |
-
with gr.Group():
|
416 |
-
def merge(ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0, version_2):
|
417 |
-
for model in MODELS:
|
418 |
-
if model["model_name"] == ckpt_a:
|
419 |
-
ckpt_a = model["model"]
|
420 |
-
if model["model_name"] == ckpt_b:
|
421 |
-
ckpt_b = model["model"]
|
422 |
-
|
423 |
-
path = model_handler.merge(ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0, version_2)
|
424 |
-
if path == "Fail to merge the models. The model architectures are not the same.":
|
425 |
-
return "Fail to merge the models. The model architectures are not the same."
|
426 |
-
else:
|
427 |
-
MODELS.append({"model": path, "index": None, "model_name": name_to_save0})
|
428 |
-
return "Merged, saved as " + name_to_save0
|
429 |
-
|
430 |
-
gr.Markdown(value="Strongly suggested to use only very clean models.")
|
431 |
-
with gr.Row():
|
432 |
-
def update():
|
433 |
-
print(MODELS)
|
434 |
-
return gr.Dropdown(label="Model A", choices=[model["model_name"] for model in MODELS]), gr.Dropdown(label="Model B", choices=[model["model_name"] for model in MODELS])
|
435 |
-
refresh_button_fusion = gr.Button("Refresh Models")
|
436 |
-
ckpt_a = gr.Dropdown(label="Model A", choices=[model["model_name"] for model in MODELS])
|
437 |
-
ckpt_b = gr.Dropdown(label="Model B", choices=[model["model_name"] for model in MODELS])
|
438 |
-
refresh_button_fusion.click(update, outputs=[ckpt_a, ckpt_b])
|
439 |
-
alpha_a = gr.Slider(
|
440 |
-
minimum=0,
|
441 |
-
maximum=1,
|
442 |
-
label="Weight of the first model over the second",
|
443 |
-
value=0.5,
|
444 |
-
interactive=True,
|
445 |
-
)
|
446 |
-
with gr.Group():
|
447 |
-
with gr.Row():
|
448 |
-
sr_ = gr.Radio(
|
449 |
-
label="Sample rate of both models",
|
450 |
-
choices=["32k","40k", "48k"],
|
451 |
-
value="32k",
|
452 |
-
interactive=True,
|
453 |
-
)
|
454 |
-
if_f0_ = gr.Radio(
|
455 |
-
label="Pitch Guidance",
|
456 |
-
choices=["Yes", "Nah"],
|
457 |
-
value="Yes",
|
458 |
-
interactive=True,
|
459 |
-
)
|
460 |
-
info__ = gr.Textbox(
|
461 |
-
label="Add informations to the model",
|
462 |
-
value="",
|
463 |
-
max_lines=8,
|
464 |
-
interactive=True,
|
465 |
-
visible=False
|
466 |
-
)
|
467 |
-
name_to_save0 = gr.Textbox(
|
468 |
-
label="Final Model name",
|
469 |
-
value="",
|
470 |
-
max_lines=1,
|
471 |
-
interactive=True,
|
472 |
-
)
|
473 |
-
version_2 = gr.Radio(
|
474 |
-
label="Versions of the models",
|
475 |
-
choices=["v1", "v2"],
|
476 |
-
value="v2",
|
477 |
-
interactive=True,
|
478 |
-
)
|
479 |
-
with gr.Group():
|
480 |
-
with gr.Row():
|
481 |
-
but6 = gr.Button("Fuse the two models", variant="primary")
|
482 |
-
info4 = gr.Textbox(label="Output", value="", max_lines=8)
|
483 |
-
but6.click(
|
484 |
-
merge,
|
485 |
-
[ckpt_a,ckpt_b,alpha_a,sr_,if_f0_,info__,name_to_save0,version_2,],info4,api_name="ckpt_merge",)
|
486 |
-
|
487 |
-
with gr.Accordion("Model Quantization", open=False):
|
488 |
-
gr.Markdown("Quantize the model to a lower precision. - soon™ or never™ 😎")
|
489 |
-
|
490 |
-
|
491 |
-
with gr.Tab("Credits"):
|
492 |
-
gr.Markdown(
|
493 |
-
"""
|
494 |
-
Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo)
|
495 |
-
|
496 |
-
The Inference code is made by [r3gm](https://huggingface.co/r3gm) (his module helped form this space 💖)
|
497 |
-
|
498 |
-
made with ❤️ by [mikus](https://github.com/cappuch) - made the ui!
|
499 |
-
|
500 |
-
## In loving memory of JLabDX 🕊️
|
501 |
-
"""
|
502 |
-
)
|
503 |
-
with gr.Tab(("")):
|
504 |
-
gr.Markdown('''
|
505 |
-

|
506 |
-
''')
|
507 |
|
508 |
-
app.queue(api_open=False).launch(show_api=False)
|
|
|
2 |
import requests
|
3 |
import random
|
4 |
import os
|
5 |
+
import zipfile
|
6 |
import librosa
|
7 |
import time
|
8 |
from infer_rvc_python import BaseLoader
|
|
|
12 |
import tempfile
|
13 |
from audio_separator.separator import Separator
|
14 |
import model_handler
|
15 |
+
import logging
|
16 |
+
import aiohttp
|
17 |
+
import asyncio
|
18 |
|
19 |
+
# Configure logging
|
20 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
|
23 |
+
# Constants
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
TEMP_DIR = "temp"
|
25 |
MODEL_PREFIX = "model"
|
26 |
+
PITCH_ALGO_OPT = ["pm", "harvest", "crepe", "rmvpe", "rmvpe+"]
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
UVR_5_MODELS = [
|
28 |
{"model_name": "BS-Roformer-Viperx-1297", "checkpoint": "model_bs_roformer_ep_317_sdr_12.9755.ckpt"},
|
29 |
{"model_name": "MDX23C-InstVoc HQ 2", "checkpoint": "MDX23C-8KFFT-InstVoc_HQ_2.ckpt"},
|
|
|
35 |
MODELS = [
|
36 |
{"model": "model.pth", "index": "model.index", "model_name": "Test Model"},
|
37 |
]
|
38 |
+
BAD_WORDS = ['puttana', 'whore', 'badword3', 'badword4']
|
39 |
+
MAX_FILE_SIZE = 500_000_000 # 500 MB
|
40 |
|
41 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
42 |
|
43 |
+
try:
|
44 |
+
import spaces
|
45 |
+
spaces_status = True
|
46 |
+
except ImportError:
|
47 |
+
spaces_status = False
|
48 |
+
logger.warning("Spaces module not found; running in CPU mode")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
separator = Separator()
|
51 |
+
converter = BaseLoader(only_cpu=not spaces_status, hubert_path=None, rmvpe_path=None)
|
52 |
|
53 |
class BadWordError(Exception):
|
54 |
+
pass
|
|
|
|
|
55 |
|
56 |
+
async def text_to_speech_edge(text, language_code):
|
57 |
+
if not text.strip():
|
58 |
+
raise ValueError("Text input cannot be empty")
|
59 |
+
voice = tts_order_voice.get(language_code, tts_order_voice[list(tts_order_voice.keys())[0]])
|
60 |
+
communicate = edge_tts.Communicate(text, voice)
|
61 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
62 |
+
tmp_path = tmp_file.name
|
63 |
+
await communicate.save(tmp_path)
|
64 |
+
return tmp_path
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
async def download_from_url(url, name, progress=gr.Progress()):
|
67 |
+
if not url.startswith("https://huggingface.co"):
|
68 |
+
raise ValueError("URL must be from Hugging Face")
|
69 |
+
if not name.strip():
|
70 |
+
raise ValueError("Model name cannot be empty")
|
71 |
+
if any(bad_word in url.lower() or bad_word in name.lower() for bad_word in BAD_WORDS):
|
72 |
+
raise BadWordError("Input contains restricted words")
|
73 |
+
|
74 |
+
filename = os.path.join(TEMP_DIR, f"{MODEL_PREFIX}{random.randint(1, 1000)}.zip")
|
75 |
+
async with aiohttp.ClientSession() as session:
|
76 |
+
async with session.get(url.replace("/blob/", "/resolve/")) as response:
|
77 |
+
if response.status != 200:
|
78 |
+
raise ValueError("Failed to download file")
|
79 |
+
total = int(response.headers.get('content-length', 0))
|
80 |
+
if total > MAX_FILE_SIZE:
|
81 |
+
raise ValueError(f"File size exceeds {MAX_FILE_SIZE / 1_000_000} MB limit")
|
82 |
+
current = 0
|
83 |
+
with open(filename, "wb") as f:
|
84 |
+
async for data in response.content.iter_chunked(4096):
|
85 |
+
f.write(data)
|
86 |
+
current += len(data)
|
87 |
+
progress(current / total, desc="Downloading model")
|
88 |
|
|
|
89 |
try:
|
90 |
+
with zipfile.ZipFile(filename, 'r') as zip_ref:
|
91 |
+
zip_ref.extractall(os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0]))
|
92 |
except Exception as e:
|
93 |
+
logger.error(f"Failed to unzip file: {e}")
|
94 |
+
raise ValueError("Failed to unzip file")
|
95 |
+
|
96 |
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
|
97 |
+
pth_files = [os.path.join(root, file) for root, _, files in os.walk(unzipped_dir) for file in files if file.endswith(".pth")]
|
98 |
+
index_files = [os.path.join(root, file) for root, _, files in os.walk(unzipped_dir) for file in files if file.endswith(".index")]
|
99 |
+
|
100 |
+
if not pth_files or not index_files:
|
101 |
+
raise ValueError("No .pth or .index files found in the zip")
|
|
|
|
|
|
|
102 |
|
|
|
|
|
|
|
103 |
pth_file = pth_files[0]
|
104 |
index_file = index_files[0]
|
105 |
+
name = name or os.path.basename(pth_file).split(".")[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
MODELS.append({"model": pth_file, "index": index_file, "model_name": name})
|
107 |
+
return [f"Downloaded as {name}", pth_file, index_file]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
def inf_handler(audio, model_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
model_found = False
|
111 |
for model_info in UVR_5_MODELS:
|
112 |
if model_info["model_name"] == model_name:
|
|
|
116 |
if not model_found:
|
117 |
separator.load_model()
|
118 |
output_files = separator.separate(audio)
|
119 |
+
return output_files[0], output_files[1]
|
|
|
|
|
120 |
|
121 |
+
def run(model, audio_files, pitch_alg, pitch_lvl, index_inf, r_m_f, e_r, c_b_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
if not audio_files:
|
123 |
+
raise ValueError("Please upload an audio file")
|
|
|
124 |
if isinstance(audio_files, str):
|
125 |
audio_files = [audio_files]
|
126 |
+
|
127 |
+
random_tag = f"USER_{random.randint(10000000, 99999999)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
file_m = model
|
129 |
+
file_index = None
|
130 |
+
for m in MODELS:
|
131 |
+
if m["model_name"] == file_m:
|
132 |
+
file_m = m["model"]
|
133 |
+
file_index = m["index"]
|
|
|
|
|
|
|
134 |
break
|
135 |
|
136 |
if not file_m.endswith(".pth"):
|
137 |
+
raise ValueError("Model file must be a .pth file")
|
138 |
+
|
139 |
+
logger.info(f"Running inference with model: {file_m}, tag: {random_tag}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
converter.apply_conf(
|
141 |
tag=random_tag,
|
142 |
file_model=file_m,
|
|
|
147 |
respiration_median_filtering=r_m_f,
|
148 |
envelope_ratio=e_r,
|
149 |
consonant_breath_protection=c_b_p,
|
150 |
+
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
|
151 |
)
|
152 |
time.sleep(0.1)
|
|
|
153 |
result = convert_now(audio_files, random_tag, converter)
|
|
|
|
|
154 |
return result[0]
|
155 |
|
156 |
+
def convert_now(audio_files, random_tag, converter):
|
157 |
+
return converter(
|
158 |
+
audio_files,
|
159 |
+
random_tag,
|
160 |
+
overwrite=False,
|
161 |
+
parallel_workers=8
|
162 |
+
)
|
163 |
|
164 |
+
def upload_model(index_file, pth_file, model_name):
|
165 |
+
if not index_file or not pth_file:
|
166 |
+
raise ValueError("Both index and model files are required")
|
167 |
+
if not model_name.strip():
|
168 |
+
raise ValueError("Model name cannot be empty")
|
169 |
+
MODELS.append({"model": pth_file.name, "index": index_file.name, "model_name": model_name})
|
170 |
+
return "Model uploaded successfully!"
|
171 |
+
|
172 |
+
def json_to_markdown_table(json_data):
|
173 |
+
table = "| Key | Value |\n| --- | --- |\n"
|
174 |
+
for key, value in json_data.items():
|
175 |
+
table += f"| {key} | {value} |\n"
|
176 |
+
return table
|
177 |
+
|
178 |
+
def model_info(name):
|
179 |
+
for model in MODELS:
|
180 |
+
if model["model_name"] == name:
|
181 |
+
info = model_handler.model_info(model["model"])
|
182 |
+
info2 = {
|
183 |
+
"Model Name": model["model_name"],
|
184 |
+
"Model Config": info['config'],
|
185 |
+
"Epochs Trained": info['epochs'],
|
186 |
+
"Sample Rate": info['sr'],
|
187 |
+
"Pitch Guidance": info['f0'],
|
188 |
+
"Model Precision": info['size'],
|
189 |
+
}
|
190 |
+
return json_to_markdown_table(info2)
|
191 |
+
return "Model not found"
|
192 |
+
|
193 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC 💖") as app:
|
194 |
gr.Markdown("# Ilaria RVC 💖")
|
195 |
+
gr.Markdown("Support the project by donating on [Ko-Fi](https://ko-fi.com/ilariaowo)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
with gr.Tab("Inference"):
|
198 |
+
with gr.Group():
|
199 |
+
models_dropdown = gr.Dropdown(label="Select Model", choices=[m["model_name"] for m in MODELS], value=MODELS[0]["model_name"])
|
200 |
+
refresh_button = gr.Button("Refresh Models", variant="secondary")
|
201 |
+
refresh_button.click(lambda: gr.Dropdown(choices=[m["model_name"] for m in MODELS]), outputs=models_dropdown)
|
|
|
|
|
|
|
202 |
|
203 |
+
sound_gui = gr.Audio(label="Input Audio", type="filepath")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
with gr.Accordion("Text-to-Speech", open=False):
|
206 |
+
text_tts = gr.Textbox(label="Text Input", placeholder="Enter text to convert to speech", lines=3)
|
207 |
+
dropdown_tts = gr.Dropdown(label="Language and Voice", choices=list(tts_order_voice.keys()), value=list(tts_order_voice.keys())[0])
|
208 |
+
button_tts = gr.Button("Generate Speech", variant="primary")
|
209 |
+
button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=sound_gui)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
with gr.Accordion("Conversion Settings", open=False):
|
212 |
+
pitch_algo_conf = gr.Dropdown(choices=PITCH_ALGO_OPT, value=PITCH_ALGO_OPT[4], label="Pitch Algorithm", info="Select the algorithm for pitch detection")
|
213 |
+
with gr.Row():
|
214 |
+
pitch_lvl_conf = gr.Slider(label="Pitch Level", minimum=-24, maximum=24, step=1, value=0, info="Adjust pitch: negative for male, positive for female")
|
215 |
+
index_inf_conf = gr.Slider(minimum=0, maximum=1, value=0.75, label="Index Influence", info="Controls how much accent is applied")
|
216 |
+
with gr.Row():
|
217 |
+
respiration_filter_conf = gr.Slider(minimum=0, maximum=7, value=3, step=1, label="Respiration Median Filtering")
|
218 |
+
envelope_ratio_conf = gr.Slider(minimum=0, maximum=1, value=0.25, label="Envelope Ratio")
|
219 |
+
consonant_protec_conf = gr.Slider(minimum=0, maximum=0.5, value=0.5, label="Consonant Breath Protection")
|
220 |
|
221 |
+
with gr.Row():
|
222 |
+
button_conf = gr.Button("Convert Audio", variant="primary")
|
223 |
+
output_conf = gr.Audio(type="filepath", label="Converted Audio")
|
224 |
+
button_conf.click(run, inputs=[models_dropdown, sound_gui, pitch_algo_conf, pitch_lvl_conf, index_inf_conf, respiration_filter_conf, envelope_ratio_conf, consonant_protec_conf], outputs=output_conf)
|
225 |
+
|
226 |
+
with gr.Tab("Model Loader"):
|
227 |
+
with gr.Accordion("Download Model", open=False):
|
228 |
+
gr.Markdown("Download a model from Hugging Face (RVC model, max 500 MB)")
|
229 |
+
model_url = gr.Textbox(label="Hugging Face Model URL", placeholder="https://huggingface.co/username/model")
|
230 |
+
model_name = gr.Textbox(label="Model Name", placeholder="Enter a unique model name")
|
231 |
+
download_button = gr.Button("Download Model", variant="primary")
|
232 |
+
status = gr.Textbox(label="Status", interactive=False)
|
233 |
+
model_pth = gr.Textbox(label="Model .pth File", interactive=False)
|
234 |
+
index_pth = gr.Textbox(label="Index .index File", interactive=False)
|
235 |
+
download_button.click(download_from_url, [model_url, model_name], [status, model_pth, index_pth])
|
236 |
+
|
237 |
+
with gr.Accordion("Upload Model", open=False):
|
238 |
index_file_upload = gr.File(label="Index File (.index)")
|
239 |
pth_file_upload = gr.File(label="Model File (.pth)")
|
240 |
+
model_name_upload = gr.Textbox(label="Model Name", placeholder="Enter a unique model name")
|
241 |
+
upload_button = gr.Button("Upload Model", variant="primary")
|
242 |
+
upload_status = gr.Textbox(label="Status", interactive=False)
|
243 |
+
upload_button.click(upload_model, [index_file_upload, pth_file_upload, model_name_upload], upload_status)
|
244 |
+
|
245 |
+
with gr.Tab("Vocal Separator"):
|
246 |
+
gr.Markdown("Separate vocals and instruments using UVR models (CPU only)")
|
247 |
+
uvr5_audio_file = gr.Audio(label="Input Audio", type="filepath")
|
|
|
|
|
|
|
|
|
248 |
with gr.Row():
|
249 |
+
uvr5_model = gr.Dropdown(label="UVR Model", choices=[m["model_name"] for m in UVR_5_MODELS])
|
250 |
+
uvr5_button = gr.Button("Separate", variant="primary")
|
251 |
+
uvr5_output_voc = gr.Audio(label="Vocals", type="filepath")
|
252 |
+
uvr5_output_inst = gr.Audio(label="Instrumental", type="filepath")
|
253 |
+
uvr5_button.click(inf_handler, [uvr5_audio_file, uvr5_model], [uvr5_output_voc, uvr5_output_inst])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
app.queue(api_open=False).launch(show_api=False)
|