from flask import Flask, request, jsonify from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification import whisper import os import tempfile app = Flask(__name__) # Initialize Whisper model whisper_model = whisper.load_model("small") # Renamed variable # Initialize Emotion Classifier classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) # Initialize NER pipeline ner_tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER") ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER") # Renamed variable ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer) # Renamed variable @app.route('/transcribe', methods=['POST']) def transcribe(): # Get the audio file from the request if 'audio_file' not in request.files: return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files['audio_file'] # Save the file to a temporary location audio_file_path = "temp_audio.mp3" audio_file.save(audio_file_path) # Transcribe the audio to text result = whisper_model.transcribe(audio_file_path) return jsonify({"text": result["text"]}) @app.route('/classify', methods=['POST']) def classify(): try: data = request.get_json() if 'text' not in data: return jsonify({"error": "Missing 'text' field"}), 400 text = data['text'] result = classifier(text) return jsonify(result) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/ner', methods=['POST']) def ner_endpoint(): try: data = request.get_json() text = data.get("text", "") # Use the renamed ner_pipeline ner_results = ner_pipeline(text) words_and_entities = [ {"word": result['word'], "entity": result['entity']} for result in ner_results ] return jsonify({"entities": words_and_entities}) except Exception as e: return jsonify({"error": str(e)}), 500