File size: 3,440 Bytes
65f2058
 
 
b211ff8
65f2058
 
 
 
 
 
 
 
 
9cd4773
65f2058
9cd4773
65f2058
 
9cd4773
65f2058
 
9cd4773
65f2058
 
9cd4773
 
 
 
65f2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1dbe3
 
fc9d046
cc1dbe3
 
65f2058
 
e2be56e
f26c377
f856174
594861d
65f2058
cfc8853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c894f
9fbecf2
0737966
 
 
 
16d64f9
af350b1
 
160efdd
af350b1
9cd4773
 
 
 
 
 
 
 
 
65f2058
 
9cd4773
 
 
 
65f2058
9cd4773
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2

messages = []

multimodal_phi2 = MultiModalPhi2(
    modelname_or_path="Navyabhat/Llava-Phi2",
    temperature=0.2,
    max_new_tokens=1024,
    device="cpu",
)

def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
    textflag, imageflag, audioflag = False, False, False
    if text not in ["", None]:
        chatbot.append((text, None))
        textflag = True
    if image is not None:
        chatbot.append(((image,), None))
        imageflag = True
    if audio_mic is not None:
        chatbot.append(((audio_mic,), None))
        audioflag = True
    else:
        if audio_upload is not None:
            chatbot.append(((audio_upload,), None))
            audioflag = True
    if not any([textflag, imageflag, audioflag]):
        # Raise an error if neither text nor file is provided
        raise gr.Error("Enter a valid text, image or audio")
    return chatbot

def clear_data():
    return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}


def run(history, text, image, audio_upload, audio_mic):
    if text in [None, ""]:
        text = None

    if audio_upload is not None:
        audio = audio_upload
    elif audio_mic is not None:
        audio = audio_mic
    else:
        audio = None

    print("text", text)
    print("image", image)
    print("audio", audio)

    if image is not None:
        image = Image.open(image)
    outputs = multimodal_phi2(text, audio, image)
    # outputs = ""

    history.append((None, outputs.title()))
    return history, None, None, None, None
    
with gr.Blocks() as demo:
    gr.Markdown("## 🤖 Multi-modal LLM")
    gr.Markdown("This is a multi-modal LLM that takes text, image and audio as inputs.")

    with gr.Row():
        with gr.Column(scale=4):
            # Creating a column with a scale of 6
            with gr.Box():
                with gr.Row():
                    # Adding image
                    image = gr.Image(type="filepath", value=None)
                # Creating a column with a scale of 2
                with gr.Row():
                    # Add audio
                    audio_upload = gr.Audio(source="upload", type="filepath")
                    audio_mic = gr.Audio(
                        source="microphone", type="filepath", format="mp3"
                    )

        with gr.Column(scale=8):
            with gr.Box():
                with gr.Row():
                    chatbot = gr.Chatbot(
                        avatar_images=("🧑", "🤖"),
                        height=560,
                    )

    with gr.Row():
        # Adding a Textbox with a placeholder "write prompt"
        prompt = gr.Textbox(
            placeholder="Ask anything", lines=2, label="Query", value=None, scale=4
        )
       
    with gr.Row():
        # Adding a Button
        submit = gr.Button(value = "Submit", variant="primary")
        clear = gr.Button(value="Clear")

    submit.click(
        add_content,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot],
    ).success(
        run,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot, prompt, image, audio_upload, audio_mic],
    )

    clear.click(
        clear_data,
        outputs=[prompt, image, audio_upload, audio_mic, chatbot],
    )

demo.launch()