Spaces:
Sleeping
Sleeping
File size: 4,620 Bytes
d43c6a1 3dfc0a6 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 bd0b898 d43c6a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2
messages = []
multimodal_phi2 = MultiModalPhi2(
modelname_or_path="Navyabhat/Llava-Phi2",
temperature=0.2,
max_new_tokens=1024,
device="cpu",
)
def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
textflag, imageflag, audioflag = False, False, False
if text not in ["", None]:
chatbot.append((text, None))
textflag = True
if image is not None:
chatbot.append(((image,), None))
imageflag = True
if audio_mic is not None:
chatbot.append(((audio_mic,), None))
audioflag = True
else:
if audio_upload is not None:
chatbot.append(((audio_upload,), None))
audioflag = True
if not any([textflag, imageflag, audioflag]):
# Raise an error if neither text nor file is provided
raise gr.Error("Enter a valid text, image or audio")
return chatbot
def clear_data():
return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}
def run(history, text, image, audio_upload, audio_mic):
if text in [None, ""]:
text = None
if audio_upload is not None:
audio = audio_upload
elif audio_mic is not None:
audio = audio_mic
else:
audio = None
print("text", text)
print("image", image)
print("audio", audio)
if image is not None:
image = Image.open(image)
outputs = multimodal_phi2(text, audio, image)
# outputs = ""
history.append((None, outputs.title()))
return history, None, None, None, None
# Custom styling
interface_style = {
"box": {
"backgroundColor": "#f9f9f9",
"padding": "20px",
"borderRadius": "10px",
"boxShadow": "0 0 10px rgba(0, 0, 0, 0.1)",
},
"button": {
"backgroundColor": "#4caf50",
"color": "#fff",
"padding": "10px",
"border": "none",
"borderRadius": "5px",
"cursor": "pointer",
},
"textbox": {
"width": "100%",
"padding": "10px",
"marginBottom": "10px",
"boxSizing": "border-box",
},
"image": {
"width": "100%",
"marginBottom": "10px",
},
"audio": {
"width": "100%",
"marginBottom": "10px",
},
"chatbox": {
"height": "550px",
"backgroundColor": "#f0f0f0",
"borderRadius": "5px",
"padding": "10px",
"overflowY": "auto",
},
}
with gr.Blocks() as demo:
gr.Markdown("## MultiModal Phi2 Model Pretraining and Finetuning from Scratch")
with gr.Row():
with gr.Column(scale=4):
with gr.Box(style=interface_style["box"]):
with gr.Row():
prompt = gr.Textbox(
placeholder="Enter Prompt",
lines=2,
label="Query",
value=None,
style=interface_style["textbox"],
)
with gr.Row():
image = gr.Image(
type="filepath", value=None, style=interface_style["image"]
)
with gr.Row():
audio_upload = gr.Audio(
source="upload", type="filepath", style=interface_style["audio"]
)
audio_mic = gr.Audio(
source="microphone",
type="filepath",
format="mp3",
style=interface_style["audio"],
)
with gr.Column(scale=8):
with gr.Box(style=interface_style["box"]):
with gr.Row():
chatbot = gr.Chatbot(
avatar_images=("🧑", "🤖"),
height=550,
style=interface_style["chatbox"],
)
with gr.Row():
submit = gr.Button(style=interface_style["button"])
clear = gr.Button(value="Clear", style=interface_style["button"])
submit.click(
add_content,
inputs=[chatbot, prompt, image, audio_upload, audio_mic],
outputs=[chatbot],
).success(
run,
inputs=[chatbot, prompt, image, audio_upload, audio_mic],
outputs=[chatbot, prompt, image, audio_upload, audio_mic],
)
clear.click(
clear_data,
outputs=[prompt, image, audio_upload, audio_mic, chatbot],
)
demo.launch()
|