File size: 4,571 Bytes
65f2058
 
 
c78f490
b211ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65f2058
 
 
 
 
 
 
 
 
 
9cd4773
65f2058
9cd4773
65f2058
 
9cd4773
65f2058
 
9cd4773
65f2058
 
9cd4773
 
 
 
65f2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2be56e
b211ff8
9cd4773
65f2058
d0d10bb
 
 
4fdc15c
d0d10bb
 
 
 
 
10b3037
 
 
c840e1f
 
 
 
 
410daf7
c840e1f
10b3037
d0d10bb
 
 
 
 
b73cd95
d0d10bb
9cd4773
 
 
 
 
 
 
 
 
65f2058
 
9cd4773
 
 
 
65f2058
9cd4773
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2
# from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time


class Seafoam(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.gray,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )


seafoam = Seafoam()

messages = []

multimodal_phi2 = MultiModalPhi2(
    modelname_or_path="Navyabhat/Llava-Phi2",
    temperature=0.2,
    max_new_tokens=1024,
    device="cpu",
)

def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
    textflag, imageflag, audioflag = False, False, False
    if text not in ["", None]:
        chatbot.append((text, None))
        textflag = True
    if image is not None:
        chatbot.append(((image,), None))
        imageflag = True
    if audio_mic is not None:
        chatbot.append(((audio_mic,), None))
        audioflag = True
    else:
        if audio_upload is not None:
            chatbot.append(((audio_upload,), None))
            audioflag = True
    if not any([textflag, imageflag, audioflag]):
        # Raise an error if neither text nor file is provided
        raise gr.Error("Enter a valid text, image or audio")
    return chatbot


def clear_data():
    return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}


def run(history, text, image, audio_upload, audio_mic):
    if text in [None, ""]:
        text = None

    if audio_upload is not None:
        audio = audio_upload
    elif audio_mic is not None:
        audio = audio_mic
    else:
        audio = None

    print("text", text)
    print("image", image)
    print("audio", audio)

    if image is not None:
        image = Image.open(image)
    outputs = multimodal_phi2(text, audio, image)
    # outputs = ""

    history.append((None, outputs.title()))
    return history, None, None, None, None
    
with gr.Blocks(theme=seafoam) as demo:
    gr.Markdown("## MulitModal Phi2 Model Pretraining and Finetuning from Scratch")

    with gr.Row():
        chatbot = gr.Chatbot(
            avatar_images=("🧑", "🤖"),
            height=350,
        )

    with gr.Row():
        # Adding a Textbox with a placeholder "write prompt"
        prompt = gr.Textbox(
            placeholder="Enter text, or upload an image or audio", lines=2, label="Query", value=None, scale = 4
        )

        image = gr.Image(type="filepath", value=None, label = "Upload Image")
        audio_upload = gr.Audio(source="upload", type="filepath", label="Upload audio")
        # file_output = gr.File()
        # upload_button = gr.UploadButton("Click to Upload a File", file_types=["image", "audio"], file_count="multiple")
        # image = upload_button.upload(upload_file, upload_button, file_output)

        # audio_upload = image

        audio_mic = gr.Audio(
            source="microphone", type="filepath", format="mp3"
        )
    with gr.Row():
        # Adding a Button
        submit = gr.Button(value = "Submit", variant="primary")
        clear = gr.Button(value="Clear")

    submit.click(
        add_content,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot],
    ).success(
        run,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot, prompt, image, audio_upload, audio_mic],
    )

    clear.click(
        clear_data,
        outputs=[prompt, image, audio_upload, audio_mic, chatbot],
    )

demo.launch()