File size: 6,564 Bytes
65f2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43c6a1
 
 
86c183f
 
 
d43c6a1
 
61da4c8
d43c6a1
 
 
 
 
86aa17d
d43c6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c183f
d43c6a1
 
86c183f
 
 
 
 
d43c6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c183f
 
c3ebe08
 
86c183f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccfe396
 
 
 
 
86c183f
ccfe396
 
 
 
 
 
65f2058
ccfe396
 
65f2058
 
 
 
 
 
ccfe396
65f2058
 
ccfe396
65f2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccfe396
 
c3ebe08
ccfe396
65f2058
9b24172
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2

messages = []

multimodal_phi2 = MultiModalPhi2(
    modelname_or_path="Navyabhat/Llava-Phi2",
    temperature=0.2,
    max_new_tokens=1024,
    device="cpu",
)


def add_content(chatbot, input_data, input_type) -> gr.Chatbot:
    textflag, imageflag, audioflag = False, False, False
    if input_type == "text":
        chatbot.append((text, None))
        textflag = True
    if input_type == "image":
        chatbot.append(((image,), None))
        imageflag = True
    if input_type == "audio":
        chatbot.append(((audio_mic,), None))
        audioflag = True
    # else:
    #     if audio_upload is not None:
    #         chatbot.append(((audio_upload,), None))
    #         audioflag = True
    if not any([textflag, imageflag, audioflag]):
        # Raise an error if neither text nor file is provided
        raise gr.Error("Enter a valid text, image or audio")
    return chatbot


def clear_data():
    return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}


def run(history, text, image, audio_upload, audio_mic):
    if text in [None, ""]:
        text = None

    if audio_upload is not None:
        audio = audio_upload
    elif audio_mic is not None:
        audio = audio_mic
    else:
        audio = None

    print("text", text)
    print("image", image)
    print("audio", audio)

    if image is not None:
        image = Image.open(image)
    outputs = multimodal_phi2(text, audio, image)
    # outputs = ""

    history.append((None, outputs.title()))
    return history, None, None, None, None


with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        avatar_images=(None, (os.path.join(os.path.dirname(__file__), "avatar.png"))),
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=4,
            show_label=False,
            placeholder="Enter text and press enter",
            container=False,
        )
        img_audio = gr.UploadButton("πŸ“", file_types=["image", "audio"], label="Upload Image or Audio")

    txt_msg = txt.submit(add_content, [chatbot, txt], [chatbot, txt, "text"], queue=False).then(
        bot, chatbot, chatbot, api_name="bot_response"
    )
    img_audio_msg = img_audio.upload(add_input, [chatbot, img_audio], [chatbot, "image"], queue=False).then(
        bot, chatbot, chatbot
    )

    # chatbot.like(print_like_dislike, None, None)


    submit.click(
        add_content,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot],
    ).success(
        run,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot, prompt, image, audio_upload, audio_mic],
    )

    clear.click(
        clear_data,
        outputs=[prompt, image, audio_upload, audio_mic, chatbot],
    )

demo.launch()


import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2
import os

messages = []

multimodal_phi2 = MultiModalPhi2(
    modelname_or_path="Navyabhat/Llava-Phi2",
    temperature=0.2,
    max_new_tokens=1024,
    device="cpu",
)


def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
    textflag, imageflag, audioflag = False, False, False
    if text not in ["", None]:
        chatbot.append((text, None))
        textflag = True
    if image is not None:
        chatbot.append(((image,), None))
        imageflag = True
    if audio_mic is not None:
        chatbot.append(((audio_mic,), None))
        audioflag = True
    else:
        if audio_upload is not None:
            chatbot.append(((audio_upload,), None))
            audioflag = True
    if not any([textflag, imageflag, audioflag]):
        # Raise an error if neither text nor file is provided
        raise gr.Error("Enter a valid text, image or audio")
    return chatbot


def clear_data():
    return {"text": None, "image": None, "audio_upload": None, "audio_mic": None, "chatbot": []}


def run(history, text, image, audio_upload, audio_mic):
    if text in [None, ""]:
        text = None

    if audio_upload is not None:
        audio = audio_upload
    elif audio_mic is not None:
        audio = audio_mic
    else:
        audio = None

    print("text", text)
    print("image", image)
    print("audio", audio)

    if image is not None:
        image = Image.open(image)
    outputs = multimodal_phi2(text, audio, image)

    history.append((None, outputs.title()))
    return history, None, None, None, None


# def print_like_dislike(x: gr.LikeData):
#     print(x.index, x.value, x.liked)


def add_text(history, text):
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def add_file(history, file):
    history = history + [((file.name,), None)]
    return history


def bot(history):
    response = "**That's cool!**"
    history[-1][1] = ""
    for character in response:
        history[-1][1] += character
        time.sleep(0.05)
        yield history


with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        avatar_images=(None, (os.path.join(os.path.dirname(__file__), "avatar.png"))),
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=4,
            show_label=False,
            placeholder="Enter text and press enter",
            container=False,
        )
        img_audio = gr.UploadButton("πŸ“", file_types=["image", "audio"], label="Upload Image or Audio")

    with gr.Row():
                    # Adding a Button
                    submit = gr.Button()
                    clear = gr.Button(value="Clear")

    txt_msg = txt.submit(add_input, [chatbot, txt], [chatbot, txt, "text"], queue=False).then(
        bot, chatbot, chatbot, api_name="bot_response"
    )
    img_audio_msg = img_audio.upload(add_input, [chatbot, img_audio], [chatbot, "image"], queue=False).then(
        bot, chatbot, chatbot
    )

    # submit.click(
    #     add_content,
    #     inputs=[chatbot, txt, image, audio_upload, audio_mic],
    #     outputs=[chatbot],
    # ).success(
    #     run,
    #     inputs=[chatbot, txt, image, audio_upload, audio_mic],
    #     outputs=[chatbot, txt, image, audio_upload, audio_mic],
    # )

    clear.click(
        clear_data,
        outputs=[prompt, image, audio_upload, audio_mic, chatbot],
    )

    # chatbot.like(print_like_dislike, None, None)

# demo.queue()
demo.launch()