Added functionality to convert a frame range to a timeline dense point cloud.
Browse filesThe function get_timeline_dense_cloud() will return this as a np.array.
Also added doc strings for all functions.
Finally, renamed read_fbx.py to fbx_handler.py and moved it to the main directory because this class will be handling everything related to the FBX SDK.
- app.py +2 -2
- fbx_handler.py +564 -0
- labeler/read_fbx.py +0 -238
app.py
CHANGED
@@ -7,11 +7,11 @@ from pathlib import Path
|
|
7 |
import streamlit as st
|
8 |
|
9 |
# Import custom libs.
|
10 |
-
|
11 |
|
12 |
|
13 |
def process_file(file: Path) -> bytes:
|
14 |
-
fbx_content =
|
15 |
return fbx_content.export(t='string')
|
16 |
|
17 |
|
|
|
7 |
import streamlit as st
|
8 |
|
9 |
# Import custom libs.
|
10 |
+
import fbx_handler
|
11 |
|
12 |
|
13 |
def process_file(file: Path) -> bytes:
|
14 |
+
fbx_content = fbx_handler.FBXContainer(file)
|
15 |
return fbx_content.export(t='string')
|
16 |
|
17 |
|
fbx_handler.py
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import core libs.
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import List, Union, Tuple
|
6 |
+
|
7 |
+
# Import util libs.
|
8 |
+
import contextlib
|
9 |
+
import fbx
|
10 |
+
|
11 |
+
# Import custom data.
|
12 |
+
import globals
|
13 |
+
|
14 |
+
|
15 |
+
def center_axis(a: List[float]) -> np.array:
|
16 |
+
"""
|
17 |
+
Centers a list of floats.
|
18 |
+
:param a: List of floats to center.
|
19 |
+
:return: The centered list as a `np.array`.
|
20 |
+
"""
|
21 |
+
# Turn list into np array for optimized math.
|
22 |
+
a = np.array(a)
|
23 |
+
|
24 |
+
# Find the centroid by subtracting the lowest value from the highest value.
|
25 |
+
_min = np.min(a)
|
26 |
+
_max = np.max(a)
|
27 |
+
_c = _max - _min
|
28 |
+
# Center the array by subtracting the centroid.
|
29 |
+
a -= _c
|
30 |
+
return a
|
31 |
+
|
32 |
+
|
33 |
+
def make_ghost_markers(missing: int) -> np.array:
|
34 |
+
"""
|
35 |
+
Creates a np array containing enough rows to fill a point cloud up to 1000 points.
|
36 |
+
Ghost markers are always unlabeled markers, therefore their actor and marker class is 0.
|
37 |
+
:param missing: `int` amount of missing rows in the cloud that need to be filled with this function.
|
38 |
+
:return: multidimensional `np.array` with the shape: (missing, 5).
|
39 |
+
"""
|
40 |
+
return np.column_stack([
|
41 |
+
np.zeros((missing, 1), dtype=int), # 0
|
42 |
+
np.zeros((missing, 1), dtype=int), # 0
|
43 |
+
np.random.rand(missing, 1), # 0.0-1.0
|
44 |
+
np.random.rand(missing, 1), # 0.0-1.0
|
45 |
+
np.random.rand(missing, 1) # 0.0-1.0
|
46 |
+
])
|
47 |
+
|
48 |
+
|
49 |
+
class FBXContainer:
|
50 |
+
# TODO: Model is currently built for training. Add testing mode.
|
51 |
+
def __init__(self, fbx_file: Path,
|
52 |
+
volume_dims: Tuple[float] = (10., 4., 10.),
|
53 |
+
max_actors: int = 10,
|
54 |
+
pc_size: int = 1000,
|
55 |
+
scale: float = 0.01):
|
56 |
+
"""
|
57 |
+
Class that stores references to important nodes in an FBX file.
|
58 |
+
Offers utility functions to quickly load animation data.
|
59 |
+
:param fbx_file: `Path` to the file to load.
|
60 |
+
:param volume_dims: `tuple` of `float` that represent the dimensions of the capture volume in meters.
|
61 |
+
:param max_actors: `int` maximum amount of actors to expect in a point cloud.
|
62 |
+
:param pc_size: `int` amount of points in a point cloud.
|
63 |
+
"""
|
64 |
+
if pc_size < max_actors * 73:
|
65 |
+
raise ValueError('Point cloud size must be large enough to contain the maximum amount of actors * 73'
|
66 |
+
f' markers: {pc_size}/{max_actors * 73}.')
|
67 |
+
|
68 |
+
# Python ENUM of the C++ time modes.
|
69 |
+
self.time_modes = globals.get_time_modes()
|
70 |
+
# Ordered list of marker names. Note: rearrange this in globals.py.
|
71 |
+
self.marker_names = globals.get_marker_names()
|
72 |
+
|
73 |
+
# Initiate empty lists to store references to nodes.
|
74 |
+
self.markers = []
|
75 |
+
self.actors = []
|
76 |
+
# Store names of the actors (all parent nodes that have the first 4 markers as children).
|
77 |
+
self.actor_names = []
|
78 |
+
|
79 |
+
# Split the dimensions tuple into its axes for easier access.
|
80 |
+
self.vol_x = volume_dims[0]
|
81 |
+
self.vol_y = volume_dims[1]
|
82 |
+
self.vol_z = volume_dims[2]
|
83 |
+
|
84 |
+
self.scale = scale
|
85 |
+
|
86 |
+
self.max_actors = max_actors
|
87 |
+
# Maximum point cloud size = 73 * max_actors + unlabeled markers.
|
88 |
+
self.pc_size = pc_size
|
89 |
+
|
90 |
+
self.fbx_file = fbx_file
|
91 |
+
self.valid_frames = []
|
92 |
+
|
93 |
+
self.__init_scene()
|
94 |
+
self.__init_anim()
|
95 |
+
self.__init_actors()
|
96 |
+
self.__init_markers()
|
97 |
+
self.__init_unlabeled_markers()
|
98 |
+
|
99 |
+
def __init_scene(self):
|
100 |
+
"""
|
101 |
+
Stores scene, root, and time_mode properties.
|
102 |
+
Destroys the importer to remove the reference to the loaded file.
|
103 |
+
"""
|
104 |
+
# Create an FBX manager and importer.
|
105 |
+
manager = fbx.FbxManager.Create()
|
106 |
+
importer = fbx.FbxImporter.Create(manager, '')
|
107 |
+
|
108 |
+
# Import the FBX file.
|
109 |
+
importer.Initialize(str(self.fbx_file))
|
110 |
+
self.scene = fbx.FbxScene.Create(manager, '')
|
111 |
+
importer.Import(self.scene)
|
112 |
+
self.root = self.scene.GetRootNode()
|
113 |
+
self.time_mode = self.scene.GetGlobalSettings().GetTimeMode()
|
114 |
+
|
115 |
+
# Destroy importer to remove reference to imported file.
|
116 |
+
# This will allow us to delete the uploaded file.
|
117 |
+
importer.Destroy()
|
118 |
+
|
119 |
+
def __init_anim(self):
|
120 |
+
"""
|
121 |
+
Stores the anim_stack, num_frames, start_frame, end_frame properties.
|
122 |
+
"""
|
123 |
+
# Get the animation stack and layer.
|
124 |
+
anim_stack = self.scene.GetCurrentAnimationStack()
|
125 |
+
self.anim_layer = anim_stack.GetSrcObject(fbx.FbxCriteria.ObjectType(fbx.FbxAnimLayer.ClassId), 0)
|
126 |
+
|
127 |
+
# Find the total number of frames to expect from the local time span.
|
128 |
+
local_time_span = anim_stack.GetLocalTimeSpan()
|
129 |
+
self.num_frames = int(local_time_span.GetDuration().GetFrameCount(self.time_mode))
|
130 |
+
self.start_frame = local_time_span.GetStart().GetFrameCount(self.time_mode)
|
131 |
+
self.end_frame = local_time_span.GetStop().GetFrameCount(self.time_mode)
|
132 |
+
|
133 |
+
def __init_actors(self):
|
134 |
+
"""
|
135 |
+
Goes through all root children (generation 1).
|
136 |
+
If a child has 4 markers as children, it is considered an actor (Shogun subject) and appended to actors
|
137 |
+
and actor_names list properties.
|
138 |
+
Also initializes an empty valid_frames list for each found actor.
|
139 |
+
"""
|
140 |
+
# Find all parent nodes (/System, /Unlabeled_Markers, /Actor1, etc).
|
141 |
+
gen1_nodes = [self.root.GetChild(i) for i in range(self.root.GetChildCount())]
|
142 |
+
for gen1_node in gen1_nodes:
|
143 |
+
gen2_nodes = [gen1_node.GetChild(i) for i in
|
144 |
+
range(gen1_node.GetChildCount())] # Actor nodes (/Mimi/Hips, /Mimi/ARIEL, etc)
|
145 |
+
|
146 |
+
# If the first 3 marker names are children of this parent, it must be an actor.
|
147 |
+
if all(name in [node.GetName().split(':')[-1] for node in gen2_nodes] for name in self.marker_names[:4]):
|
148 |
+
self.actor_names.append(gen1_node.GetName())
|
149 |
+
self.actors.append(gen1_node)
|
150 |
+
|
151 |
+
self.actor_count = len(self.actors)
|
152 |
+
self.valid_frames = [[] for _ in range(self.actor_count)]
|
153 |
+
|
154 |
+
def __init_markers(self):
|
155 |
+
"""
|
156 |
+
Goes through all actor nodes and stores references to its marker nodes.
|
157 |
+
"""
|
158 |
+
for actor_node in self.actors:
|
159 |
+
actor_markers = {}
|
160 |
+
for marker_name in self.marker_names:
|
161 |
+
for actor_idx in range(actor_node.GetChildCount()):
|
162 |
+
child = actor_node.GetChild(actor_idx)
|
163 |
+
# Child name might have namespaces in it like this: Vera:ARIEL
|
164 |
+
# We want to match only on the actual name, so strip everything before off.
|
165 |
+
child_name = child.GetName().split(':')[-1]
|
166 |
+
if child_name == marker_name:
|
167 |
+
actor_markers[marker_name] = child
|
168 |
+
|
169 |
+
assert len(actor_markers) == len(self.marker_names), f'{actor_node.GetName()} does not have all markers.'
|
170 |
+
|
171 |
+
self.markers.append(actor_markers)
|
172 |
+
|
173 |
+
def __init_unlabeled_markers(self):
|
174 |
+
"""
|
175 |
+
Looks for the Unlabeled_Markers parent node under the root and stores references to all unlabeled marker nodes.
|
176 |
+
"""
|
177 |
+
# Find the Unlabeled_Markers parent node.
|
178 |
+
for i in range(self.root.GetChildCount()):
|
179 |
+
gen1_node = self.root.GetChild(i)
|
180 |
+
if gen1_node.GetName() == 'Unlabeled_Markers':
|
181 |
+
self.unlabeled_markers_parent = gen1_node
|
182 |
+
self.unlabeled_markers = [gen1_node.GetChild(um) for um in range(gen1_node.GetChildCount())]
|
183 |
+
return
|
184 |
+
|
185 |
+
def _check_actor(self, actor: int = 0):
|
186 |
+
"""
|
187 |
+
Safety check to see if the actor `int` is a valid number (to avoid out of range errors).
|
188 |
+
:param actor: `int` actor index, which should be between 0-max_actors.
|
189 |
+
"""
|
190 |
+
assert 0 <= actor <= self.actor_count, f'Actor index must be between 0 and {self.actor_count - 1}. ' \
|
191 |
+
f'It is {actor}.'
|
192 |
+
|
193 |
+
def _set_valid_frames_for_actor(self, actor: int = 0):
|
194 |
+
"""
|
195 |
+
Checks for each frame in the frame range, and for each marker, if there is a keyframe present
|
196 |
+
at that frame on LocalTranslation X.
|
197 |
+
If the keyframe is missing, removes that frame from the list of valid frames for that actor.
|
198 |
+
This eventually leaves a list of frames where each number is guaranteed to have a keyframe on all markers.
|
199 |
+
The list is appended to valid_frames, which can be indexed per actor.
|
200 |
+
Finally, stores a list of frames that is valid for all actors in common_frames.
|
201 |
+
:param actor: `int` index of the actor to find keyframes for.
|
202 |
+
"""
|
203 |
+
# Make sure the actor index is in range.
|
204 |
+
self._check_actor(actor)
|
205 |
+
|
206 |
+
frames = self.get_frame_range()
|
207 |
+
for _, marker in self.markers[actor].items():
|
208 |
+
# Get the animation curve for local translation x.
|
209 |
+
t_curve = marker.LclTranslation.GetCurve(self.anim_layer, 'X')
|
210 |
+
# If an actor was recorded but seems to have no animation curves, we set their valid frames to nothing.
|
211 |
+
# Then we return, because there is no point in further checking non-existent keyframes.
|
212 |
+
if t_curve is None:
|
213 |
+
self.valid_frames[actor] = []
|
214 |
+
return
|
215 |
+
|
216 |
+
# Get all keyframes on the animation curve and store their frame numbers.
|
217 |
+
keys = [t_curve.KeyGet(i).GetTime().GetFrameCount(self.time_mode) for i in range(t_curve.KeyGetCount())]
|
218 |
+
# Check for each frame in frames if it is present in the list of keyframed frames.
|
219 |
+
for frame in frames:
|
220 |
+
if frame not in keys:
|
221 |
+
# If the frame is not present, that means there is no keyframe with that frame number,
|
222 |
+
# so we don't want to use that frame because it is invalid, so we remove it from the list.
|
223 |
+
with contextlib.suppress(ValueError):
|
224 |
+
frames.remove(frame)
|
225 |
+
|
226 |
+
self.valid_frames[actor] = frames
|
227 |
+
|
228 |
+
# Store all frame lists that have at least 1 frame.
|
229 |
+
other_lists = [r for r in self.valid_frames if r]
|
230 |
+
# Make one list that contains all shared frame numbers.
|
231 |
+
self.common_frames = [num for num in self.get_frame_range()
|
232 |
+
if all(num in other_list for other_list in other_lists)]
|
233 |
+
|
234 |
+
def set_valid_frames(self):
|
235 |
+
"""
|
236 |
+
For each actor, calls _set_valid_frames_for_actor().
|
237 |
+
"""
|
238 |
+
for i in range(self.actor_count):
|
239 |
+
self._set_valid_frames_for_actor(i)
|
240 |
+
|
241 |
+
def _check_valid_frames(self, actor: int = 0):
|
242 |
+
"""
|
243 |
+
Safety check to see if the given actor has any valid frames stored.
|
244 |
+
If not, calls _set_valid_frames_for_actor() for that actor.
|
245 |
+
:param actor: `int` actor index.
|
246 |
+
"""
|
247 |
+
self._check_actor(actor)
|
248 |
+
|
249 |
+
if not len(self.valid_frames[actor]):
|
250 |
+
self._set_valid_frames_for_actor(actor)
|
251 |
+
|
252 |
+
def _modify_pose(self, actor: int = 0, frame: int = 0) -> List[float]:
|
253 |
+
"""
|
254 |
+
Evaluates all marker nodes for the given actor and modifies the resulting point cloud,
|
255 |
+
so it is centered and scaled properly for training.
|
256 |
+
:param actor: `int` actor index.
|
257 |
+
:param frame: `int` frame to evaluate the markers at.
|
258 |
+
:return: 1D list of `float` that contains the tx, ty and tz for each marker, in that order.
|
259 |
+
"""
|
260 |
+
# Set new frame to evaluate at.
|
261 |
+
time = fbx.FbxTime()
|
262 |
+
time.SetFrame(frame)
|
263 |
+
# Prepare arrays for each axis.
|
264 |
+
x, y, z = [], [], []
|
265 |
+
|
266 |
+
# For each marker, store the x, y and z global position.
|
267 |
+
for n, m in self.markers[actor].items():
|
268 |
+
t = m.EvaluateGlobalTransform(time).GetT()
|
269 |
+
x += [t[0] * self.scale]
|
270 |
+
y += [t[1] * self.scale]
|
271 |
+
z += [t[2] * self.scale]
|
272 |
+
|
273 |
+
# Move the point cloud to the center of the x and y axes. This will put the actor in the middle.
|
274 |
+
x = center_axis(x)
|
275 |
+
z = center_axis(z)
|
276 |
+
|
277 |
+
# Move the actor to the middle of the volume floor by adding volume_dim/2 to x and z.
|
278 |
+
x += self.vol_x / 2.
|
279 |
+
z += self.vol_z / 2.
|
280 |
+
|
281 |
+
# Squeeze the actor into the 1x1 plane for the neural network by dividing the axes.
|
282 |
+
x /= self.vol_x
|
283 |
+
z /= self.vol_z
|
284 |
+
y = np.array(y) / self.vol_y
|
285 |
+
|
286 |
+
# TODO: Optionally: Add any extra modifications to the point cloud here.
|
287 |
+
|
288 |
+
# Append all values to a new array, one axis at a time.
|
289 |
+
# This way it will match the column names order.
|
290 |
+
pose = []
|
291 |
+
for i in range(len(x)):
|
292 |
+
pose += [x[i]]
|
293 |
+
pose += [y[i]]
|
294 |
+
pose += [z[i]]
|
295 |
+
return pose
|
296 |
+
|
297 |
+
def extract_scaled_translation(self, m: fbx.FbxNode, time: fbx.FbxTime) -> List[float]:
|
298 |
+
"""
|
299 |
+
Evaluates a node's world translation at the given time and scales the vector down by a factor of self.scale.
|
300 |
+
:param m: `fbx.FbxNode` node that needs to be evaluated.
|
301 |
+
:param time: `fbx.FbxTime` at which frame/time the node needs to be evaluated.
|
302 |
+
:return: Translation vector as a list of floats.
|
303 |
+
"""
|
304 |
+
t = m.EvaluateGlobalTransform(time).GetT()
|
305 |
+
return [t[i] * self.scale for i in range(3)]
|
306 |
+
|
307 |
+
def get_frame_range(self) -> List[int]:
|
308 |
+
"""
|
309 |
+
Replacement and improvement for:
|
310 |
+
`list(range(self.num_frames))`
|
311 |
+
If the animation does not start at frame 0, this will return a list that has the correct frames.
|
312 |
+
:return: List of `int` frame numbers that are between the start and end frame of the animation.
|
313 |
+
"""
|
314 |
+
return list(range(self.start_frame, self.end_frame))
|
315 |
+
|
316 |
+
def columns_from_joints(self) -> List[str]:
|
317 |
+
"""
|
318 |
+
Generates a list of column names based on the (order of the) marker names.
|
319 |
+
:return: List of column names, in the form of [node1_tx, node1_ty, node1_tz, node2_tx, node2_ty, node2_tz..].
|
320 |
+
"""
|
321 |
+
columns = []
|
322 |
+
for name in self.marker_names:
|
323 |
+
columns += [f'{name}x', f'{name}y', f'{name}z']
|
324 |
+
|
325 |
+
return columns
|
326 |
+
|
327 |
+
def get_marker_by_name(self, actor: int, name: str):
|
328 |
+
"""
|
329 |
+
Returns the reference to the actor's marker.
|
330 |
+
:param actor: `int` actor index.
|
331 |
+
:param name: `str` marker name.
|
332 |
+
:return: `fbx.FbxNode` reference.
|
333 |
+
"""
|
334 |
+
self._check_actor(actor)
|
335 |
+
return self.markers[actor][name]
|
336 |
+
|
337 |
+
def print_valid_frames_stats_for_actor(self, actor: int = 0):
|
338 |
+
"""
|
339 |
+
Prints: actor name, total amount of frames in the animation, amount of valid frames for the given actor,
|
340 |
+
number of missing frames, and the ratio of valid/total frames.
|
341 |
+
:param actor: `int` actor index.
|
342 |
+
:return: Tuple of `str` actor name, `int` total frames, `int` amount of valid frames, `float` valid frame ratio.
|
343 |
+
"""
|
344 |
+
self._check_actor(actor)
|
345 |
+
self._check_valid_frames(actor)
|
346 |
+
|
347 |
+
len_valid = len(self.valid_frames[actor])
|
348 |
+
ratio = (len_valid / self.num_frames) * 100
|
349 |
+
print(f'Actor {self.actor_names[actor]}: Total: {self.num_frames}, valid: {len_valid}, missing: '
|
350 |
+
f'{self.num_frames - len_valid}, ratio: {ratio:.2f}% valid.')
|
351 |
+
|
352 |
+
return self.actor_names[actor], self.num_frames, len_valid, ratio
|
353 |
+
|
354 |
+
def get_valid_frames_for_actor(self, actor: int = 0) -> List[int]:
|
355 |
+
"""
|
356 |
+
Collects the valid frames for the given actor.
|
357 |
+
:param actor: `int` actor index.
|
358 |
+
:return: List of `int` frame numbers that have a keyframe on tx for all markers.
|
359 |
+
"""
|
360 |
+
self._check_valid_frames(actor)
|
361 |
+
return self.valid_frames[actor]
|
362 |
+
|
363 |
+
def extract_valid_translations_per_actor(self, actor: int = 0) -> List[List[float]]:
|
364 |
+
"""
|
365 |
+
Assembles the poses for the valid frames for the given actor as a 2D list where each row is a pose.
|
366 |
+
:param actor: `int` actor index.
|
367 |
+
:return: List of poses, where each pose is a list of `float` translations.
|
368 |
+
"""
|
369 |
+
# Ensure the actor index is within range.
|
370 |
+
self._check_actor(actor)
|
371 |
+
|
372 |
+
poses = []
|
373 |
+
# Go through all valid frames for this actor.
|
374 |
+
# Note that these frames can be different per actor.
|
375 |
+
for frame in self.valid_frames[actor]:
|
376 |
+
# Get the centered point cloud as a 1D list.
|
377 |
+
pose_at_frame = self._modify_pose(actor, frame)
|
378 |
+
poses.append(pose_at_frame)
|
379 |
+
|
380 |
+
return poses
|
381 |
+
|
382 |
+
def extract_all_valid_translations(self) -> pd.DataFrame:
|
383 |
+
"""
|
384 |
+
Convenience method that calls self.extract_valid_translations_per_actor() for all actors
|
385 |
+
and returns a `DataFrame` containing all poses after each other.
|
386 |
+
:return: `DataFrame` where each row is a pose.
|
387 |
+
"""
|
388 |
+
# Note that the column names are/must be in the same order as the markers.
|
389 |
+
columns = self.columns_from_joints()
|
390 |
+
|
391 |
+
all_poses = []
|
392 |
+
# For each actor, add their valid poses to all_poses.
|
393 |
+
for i in range(self.actor_count):
|
394 |
+
all_poses.extend(self.extract_valid_translations_per_actor(i))
|
395 |
+
|
396 |
+
return pd.DataFrame(all_poses, columns=columns)
|
397 |
+
|
398 |
+
def get_transformed_worldspace(self, m: fbx.FbxNode, time: fbx.FbxTime) -> List[float]:
|
399 |
+
"""
|
400 |
+
Evaluates the world translation of the given marker at the given time,
|
401 |
+
scales it down by scale and turns it into a vector list.
|
402 |
+
:param m: `fbx.FbxNode` marker to evaluate the world translation of.
|
403 |
+
:param time: `fbx.FbxTime` time to evaluate at.
|
404 |
+
:return: Vector in the form: [tx, ty, tz].
|
405 |
+
"""
|
406 |
+
t = m.EvaluateGlobalTransform(time).GetT()
|
407 |
+
x = t[0] * self.scale / self.vol_x
|
408 |
+
y = t[1] * self.scale / self.vol_y
|
409 |
+
z = t[2] * self.scale / self.vol_z
|
410 |
+
|
411 |
+
return [x, y, z]
|
412 |
+
|
413 |
+
def is_kf_present(self, marker: fbx.FbxNode, time: fbx.FbxTime) -> bool:
|
414 |
+
"""
|
415 |
+
Returns True if a keyframe is found on the given node's local translation x animation curve.
|
416 |
+
Else returns False.
|
417 |
+
:param marker: `fbx.FbxNode` marker node to evaluate.
|
418 |
+
:param time: `fbx.FbxTime` time to evaluate at.
|
419 |
+
:return: True if a keyframe was found, False otherwise.
|
420 |
+
"""
|
421 |
+
curve = marker.LclTranslation.GetCurve(self.anim_layer, 'X')
|
422 |
+
return False if curve is None else curve.KeyFind(time) != -1
|
423 |
+
|
424 |
+
def get_sparse_cloud(self, time: fbx.FbxTime) -> np.array:
|
425 |
+
"""
|
426 |
+
For each actor,
|
427 |
+
:param time:
|
428 |
+
:return:
|
429 |
+
"""
|
430 |
+
cloud = []
|
431 |
+
# Iterate through all actors to get their markers' world translations and add them to the cloud list.
|
432 |
+
for actor_idx in range(self.actor_count):
|
433 |
+
|
434 |
+
cloud.extend(
|
435 |
+
# This actor's point cloud is made up of all markers that have a keyframe at the given time.
|
436 |
+
# For each marker, we create this row: [actor class (index+1), marker class (index+1), tx, ty, tz].
|
437 |
+
# We use index+1 because the unlabeled markers will use index 0 for both classes.
|
438 |
+
[actor_idx + 1, marker_class, *self.get_transformed_worldspace(m, time)]
|
439 |
+
for marker_class, (marker_name, m) in enumerate(
|
440 |
+
self.markers[actor_idx].items(), start=1
|
441 |
+
)
|
442 |
+
# Only add the marker if it has a keyframe. Missing keyframes on these markers are potentially
|
443 |
+
# among the keyframes on the unlabeled markers. The job of the labeler AI is to predict which
|
444 |
+
# point (unlabeled or labeled) is which marker.
|
445 |
+
if self.is_kf_present(m, time)
|
446 |
+
)
|
447 |
+
|
448 |
+
# Unlabeled markers are their own 'actor', so we only need one loop here.
|
449 |
+
for m in self.unlabeled_markers:
|
450 |
+
if self.is_kf_present(m, time):
|
451 |
+
# Unlabeled markers use actor class 0 and marker class 0.
|
452 |
+
cloud.extend([[0, 0, *self.get_transformed_worldspace(m, time)]])
|
453 |
+
|
454 |
+
# If the data is extremely noisy, it might have only a few labeled markers and a lot of unlabeled markers.
|
455 |
+
# The returned point cloud is not allowed to be bigger than the maximum size (self.pc_size),
|
456 |
+
# so return the cloud as a np array that cuts off any excessive markers.
|
457 |
+
return np.array(cloud)[:self.pc_size]
|
458 |
+
|
459 |
+
def get_timeline_sparse_cloud(self) -> np.array:
|
460 |
+
"""
|
461 |
+
Convenience method that calls self.get_sparse_cloud() for all frames in the frame range
|
462 |
+
and returns the combined result.
|
463 |
+
:return: `np.array` that contains a sparse cloud for each frame in the frame range.
|
464 |
+
"""
|
465 |
+
# We need time objects in a list to do list comprehension in the return line.
|
466 |
+
# The SetFrame() method is a void/in-place method, so we can't use list comprehension
|
467 |
+
# to create a list of fbx.FbxTime()s.
|
468 |
+
time = fbx.FbxTime()
|
469 |
+
times = []
|
470 |
+
for f in self.get_frame_range():
|
471 |
+
# Use in-place function to update the time. This returns None, so we can't append this directly.
|
472 |
+
time.SetFrame(f)
|
473 |
+
times.append(time)
|
474 |
+
|
475 |
+
return np.array([self.get_sparse_cloud(t) for t in times])
|
476 |
+
|
477 |
+
def get_timeline_dense_cloud(self, shuffle: bool = False) -> np.array:
|
478 |
+
"""
|
479 |
+
For each frame in the frame range, collects the point cloud that is present in the file.
|
480 |
+
Then it creates a ghost cloud of random markers that are treated as unlabeled markers,
|
481 |
+
and adds them together to create a dense cloud whose shape is always (self.pc_size, 5).
|
482 |
+
Optionally shuffles this dense cloud before adding it to the final list.
|
483 |
+
:param shuffle: If `True`, shuffles the dense point cloud before appending it to the overall list.
|
484 |
+
:return: `np.array` that contains a dense point cloud for each frame,
|
485 |
+
with a shape of (self.num_frames, self.pc_size, 5).
|
486 |
+
"""
|
487 |
+
time = fbx.FbxTime()
|
488 |
+
clouds = []
|
489 |
+
for frame in self.get_frame_range():
|
490 |
+
time.SetFrame(frame)
|
491 |
+
cloud = self.get_sparse_cloud(time)
|
492 |
+
missing = self.pc_size - cloud.shape[0]
|
493 |
+
|
494 |
+
# Only bother creating ghost markers if there are any missing rows.
|
495 |
+
if missing > 0:
|
496 |
+
ghost_cloud = make_ghost_markers(missing)
|
497 |
+
cloud = np.vstack([cloud, ghost_cloud])
|
498 |
+
|
499 |
+
# Shuffle the rows if needed. Because each row contains all dependent and independent variables,
|
500 |
+
# shuffling won't mess up the labels.
|
501 |
+
if shuffle:
|
502 |
+
np.random.shuffle(cloud)
|
503 |
+
|
504 |
+
clouds.append(cloud)
|
505 |
+
|
506 |
+
return np.array(clouds)
|
507 |
+
|
508 |
+
def split_timeline_dense_cloud(self, cloud: np.array = None, shuffle: bool = False) \
|
509 |
+
-> Tuple[np.array, np.array, np.array]:
|
510 |
+
"""
|
511 |
+
Splits a timeline dense cloud with shape (self.num_frames, self.pc_size, 5) into 3 different
|
512 |
+
arrays:
|
513 |
+
1. A `np.array` with the actor classes as shape (self.num_frames, self.pc_size, 1).
|
514 |
+
2. A `np.array` with the marker classes as shape (self.num_frames, self.pc_size, 1).
|
515 |
+
3. A `np.array` with the translation floats as shape (self.num_frames, self.pc_size, 3).
|
516 |
+
:param cloud: `np.array` of shape (self.num_frames, self.pc_size, 5) that contains a dense point cloud
|
517 |
+
(self.pc_size, 5) per frame in the frame range.
|
518 |
+
:param shuffle: `bool` whether to shuffle the generated cloud if no cloud was given.
|
519 |
+
:return: Return tuple of `np.array` as (actor classes, marker classes, translation vectors).
|
520 |
+
"""
|
521 |
+
if cloud is None:
|
522 |
+
cloud = self.get_timeline_dense_cloud(shuffle)
|
523 |
+
|
524 |
+
assert cloud.shape[1] == 1000, f"Dense cloud doesn't have enough points. {cloud.shape[1]}/1000."
|
525 |
+
assert cloud.shape[2] == 5, f"Dense cloud is missing columns: {cloud.shape[2]}/5."
|
526 |
+
|
527 |
+
# Return np arrays as (actor classes, marker classes, translation vectors).
|
528 |
+
return cloud[:, :, 0], cloud[:, :, 1], cloud[:, :, -3:]
|
529 |
+
|
530 |
+
def convert_class_to_actor(self, c: float = 0):
|
531 |
+
"""
|
532 |
+
Returns the actor name based on the class value.
|
533 |
+
:param c: `float` actor class index.
|
534 |
+
:return: `str` actor name.
|
535 |
+
"""
|
536 |
+
return 'UNLABELED' if c == 0. else self.actor_names[int(c) - 1]
|
537 |
+
|
538 |
+
def convert_class_to_marker(self, c: float = 0):
|
539 |
+
"""
|
540 |
+
Returns the marker name based on the class value.
|
541 |
+
:param c: `float` marker class index.
|
542 |
+
:return: `str` marker name.
|
543 |
+
"""
|
544 |
+
return 'UNLABELED' if c == 0. else self.marker_names[int(c) - 1]
|
545 |
+
|
546 |
+
def export(self, t: str = 'csv', output_file: Path = None) -> Union[bytes, Path]:
|
547 |
+
# Get the dataframe with all animation data.
|
548 |
+
df = self.extract_all_valid_translations()
|
549 |
+
|
550 |
+
if t == 'string':
|
551 |
+
return df.to_csv(index=False).encode('utf-8')
|
552 |
+
|
553 |
+
if output_file is None:
|
554 |
+
output_file = self.fbx_file.with_suffix('.csv')
|
555 |
+
|
556 |
+
if output_file.suffix != '.csv':
|
557 |
+
raise ValueError(f'{output_file} needs to be a .csv file.')
|
558 |
+
|
559 |
+
df.to_csv(output_file, index=False)
|
560 |
+
return output_file
|
561 |
+
|
562 |
+
|
563 |
+
# d = FBXContainer(Path('G:/Firestorm/mocap-ai/data/fbx/dowg/TAKE_01+1_ALL_001.fbx'))
|
564 |
+
# TODO: Make functions to write new class predictions to the fbx file.
|
labeler/read_fbx.py
DELETED
@@ -1,238 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
from pathlib import Path
|
4 |
-
|
5 |
-
import contextlib
|
6 |
-
import fbx
|
7 |
-
from typing import List, Union
|
8 |
-
|
9 |
-
# Import custom data.
|
10 |
-
import globals
|
11 |
-
|
12 |
-
|
13 |
-
class MarkerData:
|
14 |
-
# TODO: Model is currently built for training. Add testing mode.
|
15 |
-
def __init__(self, fbx_file: Path):
|
16 |
-
"""
|
17 |
-
Class that stores references to important nodes in an FBX file.
|
18 |
-
Offers utility functions to quickly load animation data.
|
19 |
-
:param fbx_file: `str` Path to the file to load.
|
20 |
-
"""
|
21 |
-
self.time_modes = globals.get_time_modes()
|
22 |
-
self.marker_names = globals.get_marker_names()
|
23 |
-
|
24 |
-
self.markers = []
|
25 |
-
self.actor_names = []
|
26 |
-
self.actors = []
|
27 |
-
|
28 |
-
self.volume_dim_x = 10.
|
29 |
-
self.volume_dim_y = 4.
|
30 |
-
|
31 |
-
self.fbx_file = fbx_file
|
32 |
-
self.valid_frames = []
|
33 |
-
|
34 |
-
self.__init_scene()
|
35 |
-
self.__init_anim()
|
36 |
-
self.__init_actors()
|
37 |
-
self.__init_markers()
|
38 |
-
|
39 |
-
def __init_scene(self):
|
40 |
-
# Create an FBX manager and importer
|
41 |
-
manager = fbx.FbxManager.Create()
|
42 |
-
importer = fbx.FbxImporter.Create(manager, '')
|
43 |
-
|
44 |
-
# Import the FBX file
|
45 |
-
importer.Initialize(str(self.fbx_file))
|
46 |
-
self.scene = fbx.FbxScene.Create(manager, '')
|
47 |
-
importer.Import(self.scene)
|
48 |
-
self.root = self.scene.GetRootNode()
|
49 |
-
self.time_mode = self.scene.GetGlobalSettings().GetTimeMode()
|
50 |
-
|
51 |
-
# Destroy importer to remove reference to imported file.
|
52 |
-
# This will allow us to delete the uploaded file.
|
53 |
-
importer.Destroy()
|
54 |
-
|
55 |
-
def __init_anim(self):
|
56 |
-
# Get the animation stack and layer.
|
57 |
-
anim_stack = self.scene.GetCurrentAnimationStack()
|
58 |
-
self.anim_layer = anim_stack.GetSrcObject(fbx.FbxCriteria.ObjectType(fbx.FbxAnimLayer.ClassId), 0)
|
59 |
-
|
60 |
-
# Find the total number of frames to expect from the local time span.
|
61 |
-
local_time_span = anim_stack.GetLocalTimeSpan()
|
62 |
-
self.num_frames = int(local_time_span.GetDuration().GetFrameCount(self.time_mode))
|
63 |
-
|
64 |
-
def __init_actors(self):
|
65 |
-
|
66 |
-
# Find all parent nodes (/System, /_Unlabeled_Markers, /Actor1, etc).
|
67 |
-
gen1_nodes = [self.root.GetChild(i) for i in range(self.root.GetChildCount())]
|
68 |
-
for gen1_node in gen1_nodes:
|
69 |
-
gen2_nodes = [gen1_node.GetChild(i) for i in
|
70 |
-
range(gen1_node.GetChildCount())] # Actor nodes (/Mimi/Hips, /Mimi/ARIEL, etc)
|
71 |
-
|
72 |
-
# If the first 3 marker names are children of this parent, it must be an actor.
|
73 |
-
if all(name in [node.GetName().split(':')[-1] for node in gen2_nodes] for name in self.marker_names[:4]):
|
74 |
-
self.actor_names.append(gen1_node.GetName())
|
75 |
-
self.actors.append(gen1_node)
|
76 |
-
|
77 |
-
self.actor_count = len(self.actors)
|
78 |
-
self.valid_frames = [[] for _ in range(self.actor_count)]
|
79 |
-
|
80 |
-
def __init_markers(self):
|
81 |
-
for actor_node in self.actors:
|
82 |
-
actor_markers = {}
|
83 |
-
for marker_name in self.marker_names:
|
84 |
-
for actor_idx in range(actor_node.GetChildCount()):
|
85 |
-
child = actor_node.GetChild(actor_idx)
|
86 |
-
# Child name might have namespaces in it like this: Vera:ARIEL
|
87 |
-
# We want to match only on the actual name, so strip everything before off.
|
88 |
-
child_name = child.GetName().split(':')[-1]
|
89 |
-
if child_name == marker_name:
|
90 |
-
actor_markers[marker_name] = child
|
91 |
-
|
92 |
-
assert len(actor_markers) == len(self.marker_names), f'{actor_node.GetName()} does not have all markers.'
|
93 |
-
|
94 |
-
self.markers.append(actor_markers)
|
95 |
-
|
96 |
-
def _check_actor(self, actor: int = 0):
|
97 |
-
assert 0 <= actor <= self.actor_count, f'Actor number must be between 0 and {self.actor_count - 1}. ' \
|
98 |
-
f'It is {actor}.'
|
99 |
-
|
100 |
-
def _set_valid_frames_for_actor(self, actor: int = 0):
|
101 |
-
self._check_actor(actor)
|
102 |
-
|
103 |
-
frames = list(range(self.num_frames))
|
104 |
-
for marker_name in self.marker_names:
|
105 |
-
marker = self.markers[actor][marker_name]
|
106 |
-
t_curve = marker.LclTranslation.GetCurve(self.anim_layer, 'X')
|
107 |
-
# If an actor was recorded but seems to have no animation curves, we set their valid frames to nothing.
|
108 |
-
if t_curve is None:
|
109 |
-
self.valid_frames[actor] = []
|
110 |
-
return
|
111 |
-
|
112 |
-
keys = [t_curve.KeyGet(i).GetTime().GetFrameCount(self.time_mode) for i in range(t_curve.KeyGetCount())]
|
113 |
-
for frame in frames:
|
114 |
-
if frame not in keys:
|
115 |
-
with contextlib.suppress(ValueError):
|
116 |
-
frames.remove(frame)
|
117 |
-
|
118 |
-
self.valid_frames[actor] = frames
|
119 |
-
return
|
120 |
-
|
121 |
-
def _check_valid_frames(self, actor: int = 0):
|
122 |
-
if not len(self.valid_frames[actor]):
|
123 |
-
self._set_valid_frames_for_actor(actor)
|
124 |
-
|
125 |
-
def _modify_pose(self, actor, frame) -> List[float]:
|
126 |
-
# Set new frame to evaluate at.
|
127 |
-
time = fbx.FbxTime()
|
128 |
-
time.SetFrame(frame)
|
129 |
-
# Prepare arrays for each axis.
|
130 |
-
x, y, z = [], [], []
|
131 |
-
|
132 |
-
# For each marker, store the x, y and z global position.
|
133 |
-
for n, m in self.markers[actor].items():
|
134 |
-
t = m.EvaluateGlobalTransform(time).GetRow(3)
|
135 |
-
x += [t[0] * 0.01]
|
136 |
-
y += [t[1] * 0.01]
|
137 |
-
z += [t[2] * 0.01]
|
138 |
-
|
139 |
-
# Move the point cloud to the center of the x and y axes. This will put the actor in the middle.
|
140 |
-
x = self.center_axis(x)
|
141 |
-
z = self.center_axis(z)
|
142 |
-
|
143 |
-
# Move the actor to the middle of the volume floor by adding volume_dim_x/2 to x and z.
|
144 |
-
x += self.volume_dim_x / 2.
|
145 |
-
z += self.volume_dim_x / 2.
|
146 |
-
|
147 |
-
# Squeeze the actor into the 1x1 plane for the neural network by dividing the axes.
|
148 |
-
x /= self.volume_dim_x
|
149 |
-
z /= self.volume_dim_x
|
150 |
-
y = np.array(y) / self.volume_dim_y
|
151 |
-
|
152 |
-
# TODO: Optionally: Add any extra modifications to the point cloud here.
|
153 |
-
|
154 |
-
# Append all values to a new array, one axis at a time.
|
155 |
-
# This way it will match the column names order.
|
156 |
-
pose = []
|
157 |
-
for i in range(len(x)):
|
158 |
-
pose += [x[i]]
|
159 |
-
pose += [y[i]]
|
160 |
-
pose += [z[i]]
|
161 |
-
return pose
|
162 |
-
|
163 |
-
def get_marker_by_name(self, actor: int, name: str):
|
164 |
-
self._check_actor(actor)
|
165 |
-
return self.markers[actor][name]
|
166 |
-
|
167 |
-
def get_valid_frames_for_actor(self, actor: int = 0):
|
168 |
-
self._check_valid_frames(actor)
|
169 |
-
return self.valid_frames[actor]
|
170 |
-
|
171 |
-
def print_valid_frames_stats_for_actor(self, actor: int = 0):
|
172 |
-
self._check_actor(actor)
|
173 |
-
self._check_valid_frames(actor)
|
174 |
-
|
175 |
-
len_valid = len(self.valid_frames[actor])
|
176 |
-
ratio = (len_valid / self.num_frames) * 100
|
177 |
-
print(f'Actor {self.actor_names[actor]}: Total: {self.num_frames}, valid: {len_valid}, missing: '
|
178 |
-
f'{self.num_frames - len_valid}, ratio: {ratio:.2f}% valid.')
|
179 |
-
|
180 |
-
return self.actor_names[actor], self.num_frames, len_valid, ratio
|
181 |
-
|
182 |
-
def columns_from_joints(self):
|
183 |
-
columns = []
|
184 |
-
for name in self.marker_names:
|
185 |
-
columns += [f'{name}x', f'{name}y', f'{name}z']
|
186 |
-
|
187 |
-
return columns
|
188 |
-
|
189 |
-
@staticmethod
|
190 |
-
def center_axis(a) -> np.array:
|
191 |
-
a = np.array(a)
|
192 |
-
_min = np.min(a)
|
193 |
-
_max = np.max(a)
|
194 |
-
|
195 |
-
_c = _max - _min
|
196 |
-
a -= _c
|
197 |
-
return a
|
198 |
-
|
199 |
-
def extract_translations_per_actor(self, actor: int = 0):
|
200 |
-
self._check_actor(actor)
|
201 |
-
self._check_valid_frames(actor)
|
202 |
-
|
203 |
-
poses = []
|
204 |
-
# Go through all valid frames for this actor.
|
205 |
-
# Note that these frames can be different per actor.
|
206 |
-
for frame in self.valid_frames[actor]:
|
207 |
-
# Get the centered point cloud as an array.
|
208 |
-
pose_at_frame = self._modify_pose(actor, frame)
|
209 |
-
poses.append(pose_at_frame)
|
210 |
-
|
211 |
-
return poses
|
212 |
-
|
213 |
-
def extract_all_translations(self) -> pd.DataFrame:
|
214 |
-
|
215 |
-
columns = self.columns_from_joints()
|
216 |
-
|
217 |
-
all_poses = []
|
218 |
-
|
219 |
-
for i in range(self.actor_count):
|
220 |
-
all_poses.extend(self.extract_translations_per_actor(i))
|
221 |
-
|
222 |
-
return pd.DataFrame(all_poses, columns=columns)
|
223 |
-
|
224 |
-
def export(self, t: str = 'csv', output_file: Path = None) -> Union[bytes, Path]:
|
225 |
-
# Get the dataframe with all animation data.
|
226 |
-
df = self.extract_all_translations()
|
227 |
-
|
228 |
-
if t == 'string':
|
229 |
-
return df.to_csv(index=False).encode('utf-8')
|
230 |
-
|
231 |
-
if output_file is None:
|
232 |
-
output_file = self.fbx_file.with_suffix('.csv')
|
233 |
-
|
234 |
-
if output_file.suffix != '.csv':
|
235 |
-
raise ValueError(f'{output_file} needs to be a .csv file.')
|
236 |
-
|
237 |
-
df.to_csv(output_file, index=False)
|
238 |
-
return output_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|