File size: 32,440 Bytes
e269a6f
0514416
 
e269a6f
0514416
e269a6f
 
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
 
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
0514416
e269a6f
0514416
e269a6f
0514416
 
 
 
 
 
 
 
e269a6f
0514416
e269a6f
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
0514416
 
e269a6f
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
 
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
 
0514416
 
e269a6f
 
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
 
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e269a6f
 
 
0514416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
from pathlib import Path
from typing import Tuple, List, Union
from random import randint

import h5py
import numpy as np
import torch
from torch import Tensor
from torch.utils.data import Dataset
import matplotlib.pyplot as plt

import fbx_handler
import utils


def apply_y_rotation(point_cloud_data: Tensor, angle: float = None, device: str = 'cuda') -> Tensor:
    """
    Apply a random rotation to the point cloud.
    :param point_cloud_data: `Tensor` of shape (3, 73) to modify.
    :param angle: Angle as `float` in degrees to rotate the point cloud. If this is given, the rotation is not random.
    :param device: `str` device on which to create the extra tensors.
    :return: Modified `Tensor`.
    """
    # Convert the random angle from degrees to radians.
    if angle is None:
        # If no angle is given, use a random angle between -180 and 180.
        angle = (torch.rand(1).item() * 2 - 1) * 180 * torch.tensor(torch.pi / 180, device=device)
    else:
        # If an angle is given, convert this angle instead.
        angle *= torch.tensor(torch.pi / 180, device=device)

    # Transpose the point_cloud_data from (3, 73) to (73, 3) so we can use torch.matmul.
    point_cloud_data = point_cloud_data.transpose(1, 0)

    # Create the rotation matrix for the y-axis
    rotation_matrix = torch.tensor([
        [torch.cos(angle), 0, torch.sin(angle)],
        [0, 1, 0],
        [-torch.sin(angle), 0, torch.cos(angle)]], device=device)

    # Apply the rotation to the point cloud data and reverse the transpose to get back to the original shape (3, 73).
    return torch.matmul(point_cloud_data, rotation_matrix).transpose(1, 0)


def fill_1d_tensor_with_zeros(point_cloud: Tensor, pc_size: int = 1024, device: str = 'cuda') -> Tensor:
    """
    Fill a 1D tensor with zeros, so it is as long as pc_size.
    :param point_cloud: `Tensor` of shape (73,) to add zeros to.
    :param pc_size: `int` amount of points that need to be in the final tensor in total.
    :param device: `str` device on which to create the extra tensors.
    :return: `Tensor` of  shape (pc_size,).
    """
    length = len(point_cloud)
    if length < pc_size:
        zeros = torch.zeros(pc_size - length, dtype=torch.int, device=device)
        point_cloud = torch.cat((point_cloud, zeros), dim=0)

    # Since we don't check if the length is longer than pc_size, always return the tensor with the pc_size slice.
    return point_cloud[:pc_size]


def fill_frames_tensor(point_cloud: Tensor, pc_size: int = 1024, filler: int = -1, device: str = 'cuda') -> Tensor:
    """
    Fill a 1D tensor with ones, so it is as long as pc_size.
    :param point_cloud: `Tensor` of shape (73,) to add `int` -1s to.
    :param pc_size: `int` amount of points that need to be in the final tensor in total.
    :param filler: `int` value to fill the remainder of the tensor with.
    :param device: `str` device on which to create the extra tensors.
    :return: `Tensor` of shape (pc_size,).
    """
    length = len(point_cloud)
    if length < pc_size:
        zeros = torch.full((pc_size - length,), filler, dtype=torch.int, device=device)
        point_cloud = torch.cat((point_cloud, zeros), dim=0)

    # Since we don't check if the length is longer than pc_size, always return the tensor with the pc_size slice.
    return point_cloud[:pc_size]


def convert_max_overlap(max_overlap: Union[Tuple[float, float, float], float]) -> Tuple[float, float, float]:
    """
    Convert the argument max_overlap to a float tuple of length 3.
    :param max_overlap: Either 3 floats or 1 float.
    :return: If max_overlap is 3 floats, returns max_overlap unchanged.
    If it is 1 `float`, returns a tuple of size 3 of that `float`.
    """
    if isinstance(max_overlap, float):
        return max_overlap, max_overlap, max_overlap
    if len(max_overlap) != 3:
        raise ValueError(f'max_overlap must be a tuple of length 3, not {len(max_overlap)}.')
    return max_overlap


def convert_n_samples(n_samples: Union[int, float], _max: int) -> int:
    """
    Convert the argument n_samples to an `int` that serves as a total samples amount.
    :param n_samples: Either a `float` (representing a ratio) or an `int` (representing a number of samples).
    :param _max: `int` that indicates the highest possible n_samples.
    :return: An int that is never higher than _max.
    """
    # If n_samples is between 0-1, it is considered a ratio, and we calculate the amount of rows to use.
    if isinstance(n_samples, float):
        n_samples = int(n_samples * _max)
    # If n_samples is negative, subtract the amount from the total amount of rows.
    elif n_samples < 0:
        n_samples = _max - n_samples
    # If n_samples is 0, use all rows.
    elif n_samples == 0 or n_samples > _max:
        n_samples = _max

    return n_samples


def plot_point_cloud(point_cloud: Tensor, scale: Union[int, float] = 50):
    tensor = point_cloud.cpu().numpy()
    # Extract x, y, and z coordinates from the tensor
    x = tensor[:, 0]
    y = tensor[:, 1]
    z = tensor[:, 2]

    # Create a 3D plot
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Scatter plot
    ax.scatter(x, y, z, s=scale)

    # Set axis labels
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')

    ax.set_xlim([-0.5, 0.5])
    ax.set_ylim([-0.5, 0.5])
    ax.set_zlim([-0.5, 0.5])

    ax.zaxis._axinfo['juggled'] = (1, 1, 0)
    ax.xaxis.pane.fill = False
    ax.yaxis.pane.fill = False
    ax.zaxis.pane.fill = False

    # Show the plot
    plt.show()


def compare_point_clouds(existing, title='plot'):
    colors = plt.cm.jet(np.linspace(0, 1, len(existing)))

    n_tensors = len(existing)
    plt.figure(figsize=(10, 7))
    for idx, tensor in enumerate(existing):
        tensor = tensor.cpu().numpy()
        # Extract the first and third elements
        x_coords = tensor[0]
        z_coords = tensor[2]

        # Create a scatter plot
        plt.scatter(x_coords, z_coords, c=colors[idx], label=f'Tensor {idx + 1}', s=1)

    plt.show()


def fill_translation_cloud(translations: Tensor, n_points: int = 1024, augment=torch.rand,
                           apply_shuffle: bool = True, shuffle: Tensor = None, device: str = 'cuda') \
        -> Tuple[Tensor, Tensor]:
    """
    Fill a translation tensor with filler data, so it is as long as pc_size.
    :param translations: `Tensor` of shape (3, xxx).
    :param n_points: `int` amount of total points that need to be in the output.
    :param augment: Torch filler function to use for generating filler points, default `torch.rand`.
    :param apply_shuffle: `bool` whether to shuffle the output.
    :param shuffle: `Tensor` that contains a shuffled index order that needs to be used for shuffling.
    This does nothing if apply_shuffle is False.
    :param device: `str` device on which to create the extra tensors.
    :return: Translation and shuffle tuple of `Tensor` of shape (3, n_points), and (n_points,).
    """
    # Use the second dimension as the length of the translation tensor, due to input shape (3, 73..).
    length = translations.shape[1]
    # Only create filler data if the length is shorter than the amount of points.
    if length < n_points:
        # Calculate the shape of the extra tensor, and pass it to the given augment function.
        dif = (translations.shape[0], n_points - length)
        extra = augment(dif, device=device)

        # Concatenate all values together to get shape (3, pc_size).
        translations = torch.cat((translations, extra), dim=1)
    else:
        translations = translations[:, :n_points]

    # Shuffle if needed.
    if apply_shuffle:
        if shuffle is None:
            shuffle = torch.randperm(n_points, device=device)

        translations = torch.index_select(translations, 1, shuffle)

    return translations, shuffle


def fill_point_clouds(actor_classes: Tensor, marker_classes: Tensor, translations: Tensor, frames: Tensor,
                      n_points: int = 1024, augment=torch.rand, apply_shuffle: bool = True, shuffle: Tensor = None,
                      device: str = 'cuda') \
        -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """
    Fill a point cloud with filler data, so it is as long as pc_size.
    :param actor_classes: `Tensor` of shape (n_points,) that contains the actor classes.
    :param marker_classes: `Tensor` of shape (n_points,) that contains the marker classes.
    :param translations: `Tensor` of shape (3, n_points) that contains the marker translations.
    :param frames: `Tensor` of shape (n_points,) that contains the animated frames.
    :param n_points: `int` amount of total points that need to be in the output.
    :param augment: Torch filler function to use for generating filler points, default `torch.rand`.
    :param apply_shuffle: `bool` whether to shuffle the output.
    :param shuffle: `Tensor` that contains a shuffled index order that needs to be used for shuffling. This does nothing if apply_shuffle is False.
    :param device: `str` device on which to create the extra tensors.
    :return: Tuple of `Tensor` of shape (n_points,), (n_points,), (3,n_points,), (n_points,), (n_points,)
    that represent the actor classes, marker classes, translations, animated frames and the shuffled indices used.
    """
    # Use simple functions to create full tensors for the actors/markers/frames.
    actor_classes = fill_1d_tensor_with_zeros(actor_classes, n_points, device=device)
    marker_classes = fill_1d_tensor_with_zeros(marker_classes, n_points, device=device)
    frames = fill_frames_tensor(frames, n_points, device=device)

    # Extend the translation tensor.
    length = translations.shape[1]
    if length < n_points:
        dif = (3, n_points - length)
        extra = augment(dif, device=device)

        # Concatenate all values together to get shape (pc_size,).
        translations = torch.cat((translations, extra), dim=1)
    else:
        translations = translations[:, :n_points]

    # Shuffle if needed.
    if apply_shuffle:

        if shuffle is None:
            shuffle = torch.randperm(n_points, device=device)

        actor_classes = torch.index_select(actor_classes, 0, shuffle)
        marker_classes = torch.index_select(marker_classes, 0, shuffle)
        translations = torch.index_select(translations, 1, shuffle)
        frames = torch.index_select(frames, 0, shuffle)

    # Returns a list of tensors of shape (n_points,), (n_points,), (3, n_points), (n_points,).
    return actor_classes, marker_classes, translations, frames, shuffle


def remove_inf_markers(labeled: np.ndarray, device: str = 'cuda'):
    """
    Goes through the labeled data and removes all markers that have inf features. This will also scale the translations.
    :param labeled: `np.ndarray` of shape (15, n_points) that contains the labeled data.
    :param device: `str` device on which to create the extra tensors.
    :return: Tuple of `tensor` that represent actors/markers/scaled translations/unscaled translations/frames.
    """
    # Check if the second feature (tx) is inf. This means it had no keyframe,
    # and the NN should not classify this to avoid the network learning interpolated markers.
    # Mask is True if it had a keyframe.
    mask = ~np.isinf(labeled[2])

    # Make tensors from the np arrays.
    actor_cloud = torch.tensor(labeled[0][mask], dtype=torch.int, device=device)
    marker_cloud = torch.tensor(labeled[1][mask], dtype=torch.int, device=device)
    unscaled_t_cloud = labeled[2:5][:, mask]
    frames = torch.tensor(labeled[-1][mask], dtype=torch.int, device=device)

    # Scale the translations into a separate tensor.
    scaled_t_cloud = fbx_handler.scale_translations(unscaled_t_cloud)
    scaled_t_cloud = torch.tensor(scaled_t_cloud, dtype=torch.float32, device=device)

    # After the scaled_t_cloud is made, we can convert the unscaled_t_cloud to a tensor too.
    unscaled_t_cloud = torch.tensor(unscaled_t_cloud, dtype=torch.float32, device=device)
    return actor_cloud, marker_cloud, scaled_t_cloud, unscaled_t_cloud, frames


def apply_translation(point_cloud: Tensor, t: float = 1.0, device: str = 'cuda') -> Tensor:
    """
    Apply a translation to all axes of a point cloud.
    :param point_cloud: `Tensor` of shape (3, n_points) that contains the point cloud.
    :param t: `float` that represents the translation.
    :param device: `str` device on which to create the extra tensors.
    :return: `Tensor` of shape (3, n_points) that contains the point cloud with the translation applied.
    """
    point_cloud[0] += torch.tensor(t, device=device)
    point_cloud[1] += torch.tensor(t, device=device)
    point_cloud[2] += torch.tensor(t, device=device)
    return point_cloud


class TrainDataset(Dataset):
    def __init__(self, file: Union[Path, np.array],
                 n_samples: Union[int, float] = 1.0,
                 n_attempts: int = 10,
                 pc_size: int = 1024,
                 max_actors: int = 8,
                 use_random_max_actors: bool = True,
                 use_random_translation: bool = True,
                 use_random_rotation: bool = True,
                 shuffle_markers: bool = True,
                 translation_factor: float = 0.9,
                 max_overlap: Union[Tuple[float, float, float], float] = (0.2, 0.2, 0.2),
                 augment=torch.rand,
                 debug: int = -1,
                 device: str = 'cuda'):
        self.debug = debug
        self.device = device

        # If the pc_size is a number under 73, we intend to use it as a multiplication.
        if pc_size < 73:
            pc_size *= 73
        elif pc_size < max_actors * 73:
            raise ValueError(f'pc_size must be large enough to contain 73 markers for {max_actors} actors '
                             f'({pc_size}/{max_actors * 73}).')

        # Store most arguments as class properties, so they don't have to be passed to each function.
        # These will all be deleted after the dataset is created.
        self.n_attempts = n_attempts
        self.pc_size = pc_size
        self.max_actors = max_actors
        self.shuffle_markers = shuffle_markers
        self.translation_factor = translation_factor
        self.max_overlap = convert_max_overlap(max_overlap)

        # Isolate the dependent and independent variables.
        if isinstance(file, np.ndarray):
            self.all_data = file
        else:
            self.all_data = utils.h5_to_array4d(file)
        # Shape (n_frames, 15, 73).
        self.all_data = torch.tensor(self.all_data, dtype=torch.float32, device=device)
        self.n_samples = convert_n_samples(n_samples, self.all_data.shape[0])

        self._print(f'Loaded in {len(self.all_data)} poses, with n_samples = {n_samples}.', 0)

        # Generate a random permutation of indices.
        self.random_indices = torch.randperm(len(self.all_data))
        self.random_idx = 0

        # Initiate empty lists for all the different types of data.
        actor_classes, marker_classes, translations, frames = [], [], [], []

        # For each sample, create a random point cloud.
        for _ in range(self.n_samples):
            cur_max_actors = randint(1, max_actors) if use_random_max_actors else max_actors
            actor_cloud, marker_cloud, translation_cloud, fs = self.create_sample(cur_max_actors,
                                                                                  use_random_rotation,
                                                                                  use_random_translation, augment)

            actor_classes.append(actor_cloud)
            marker_classes.append(marker_cloud)
            translations.append(translation_cloud)
            frames.append(fs)

        # (n_samples, pc_size), (n_samples, pc_size), (n_samples, 3, pc_size), (n_samples,pc_size).
        self.actor_classes = torch.stack(actor_classes)
        self.marker_classes = torch.stack(marker_classes)
        self.translations = torch.stack(translations)
        self.frames = torch.stack(frames)

        # Delete class properties that were only needed to create the dataset.
        del self.pc_size, self.max_actors, self.shuffle_markers, self.translation_factor, self.n_samples, \
            self.max_overlap, self.all_data, self.random_indices, self.random_idx, self.n_attempts

    def _print(self, txt: str, lvl: int = 0) -> None:
        if lvl <= self.debug:
            print(txt)

    def create_sample(self, max_actors: int, use_random_rotation: bool = True,
                      use_random_translation: bool = True, augment=torch.rand) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        """
        Create a random point cloud from the dataset.
        :param max_actors: `int` amount of actors to aim for in this point cloud. Any missing markers will be filled.
        :param use_random_rotation: `bool` whether to apply a random rotation to each actor's point cloud.
        :param use_random_translation:  `bool` whether to apply a random translation to each actor's point cloud.
        :param augment: Torch function to use for the filler markers. Examples are `torch.rand`, `torch.ones`, etc.
        :return: A tuple of tensors containing the actor point cloud, marker point cloud, and translation point cloud.
        """
        # Loop through all cur_max_actors, select a row from all_data, and concatenate it to the t_cloud.
        actor_cloud, marker_cloud, t_cloud, frames = [], [], [], []
        # For each actor, try 10 times to find a point cloud that does not overlap the accumulated cloud.
        # If it fails all times, we will just have fewer actors in the point cloud.
        for actor_idx in range(max_actors):
            for attempt in range(self.n_attempts):
                # In case we ever have lots of attempts, reset the random index if we have reached the end of the data.
                if self.random_idx == len(self.all_data):
                    self.random_idx = 0

                # Get a pose from the tensor using the shuffled index; shape (1, 14, 73).
                row = self.all_data[self.random_indices[self.random_idx]]
                self.random_idx += 1

                # Collect relevant data from the row.
                # Shapes: (73,).
                a = row[0].to(torch.int)
                m = row[1].to(torch.int)
                f = row[-1].to(torch.int)

                # Shape (3, 73).
                t = row[2:5]
                # Apply random rotation and translations if needed.
                if use_random_rotation:
                    t = apply_y_rotation(t, device=self.device)
                if use_random_translation:
                    t = self.apply_random_translation(t)

                self._print(f'Checking overlap for {actor_idx} - {attempt}', 1)
                if does_overlap(t_cloud, t, max_overlap=self.max_overlap):
                    # If the clouds overlap too much, we continue to the next attempt without adding this one.
                    print(f'Actor {actor_idx + 1} attempt {attempt + 1} failed.')
                    continue

                # Add data to their respective lists if the clouds don't overlap.
                actor_cloud.append(a)
                marker_cloud.append(m)
                t_cloud.append(t)
                frames.append(f)

                self._print(f'Actor {actor_idx + 1} attempt {attempt + 1} succeeded.', 1)
                # If the clouds don't overlap too much,
                # we break the loop because this attempt worked, and we don't need another one.
                break

        self._print(f'Total length: {len(t_cloud)}/{max_actors}', 0)
        # Add all lists together to create long tensors.
        # Shape (n_actors * 73,).
        actor_cloud = torch.cat(actor_cloud, dim=0)
        marker_cloud = torch.cat(marker_cloud, dim=0)
        frames = torch.cat(frames, dim=0)
        # Shape (3, n_actors * 73).
        t_cloud = torch.cat(t_cloud, dim=1)

        # Fill the clouds with more markers to get to pc_size.
        # (1024,), (1024,), (1024, 3), (1024,).
        actor_cloud, marker_cloud, t_cloud, frames, _ = fill_point_clouds(
            actor_cloud, marker_cloud, t_cloud, frames, n_points=self.pc_size,
            augment=augment, apply_shuffle=self.shuffle_markers, device=self.device)

        return actor_cloud, marker_cloud, t_cloud, frames

    def apply_random_translation(self, point_cloud: Tensor) -> Tensor:
        """
        Apply random translation to the point cloud.
        :param point_cloud: `Tensor` of shape (3, n_points).
        :return: Translated `Tensor` of shape (3, n_points).
        """
        x_translation = (torch.rand(1).item() - 0.5) * self.translation_factor
        z_translation = (torch.rand(1).item() - 0.5) * self.translation_factor
        point_cloud[0] += torch.tensor(x_translation, device=self.device)
        point_cloud[2] += torch.tensor(z_translation, device=self.device)
        return point_cloud

    def __getitem__(self, index):
        return self.actor_classes[index], self.marker_classes[index], self.translations[index], self.frames[index]

    def __len__(self):
        return len(self.actor_classes)


class InfDataset(Dataset):
    def __init__(self, source: Union[Path, Tuple[np.ndarray, np.ndarray]],
                 pc_size: int = 1024,
                 n_samples: Union[int, float] = 1.0,
                 augment=torch.rand,
                 shuffle_markers: bool = False,
                 debug: int = -1,
                 device: str = 'cuda') -> None:
        self.device = device
        self.debug = debug

        if isinstance(source, np.ndarray):
            labeled_data, unlabeled_data = source
        else:

            # if isinstance(source, Path):
            #     # if source.stem == 'ALL':
            #     #     self.data = utils.combined_test_h5_to_array4d(source, pc_size)
            #     # else:
            with h5py.File(source, 'r') as h5f:
                labeled_data = np.array(h5f['labeled'])[:5]
                unlabeled_data = np.array(h5f['unlabeled'])[:5]
            #         self.data = utils.merge_labeled_and_unlabeled_data(labeled_data, unlabeled_data, pc_size, augment)
            # else:
            # labeled_data, unlabeled_data = source
        self.assemble_data(augment, labeled_data, unlabeled_data, pc_size, n_samples, shuffle_markers)

        self._print(f'Actors: {self.actor_classes.shape}, markers: {self.marker_classes.shape}, '
                    f'translations: {self.translations.shape}', 0)
        self._print(self.actor_classes[:, :10], 0)
        self._print(self.marker_classes[:, :10], 0)
        self._print(self.translations[:, :, :10], 0)
        self._print(self.unscaled_translations[:, :, :10], 0)
        self._print(self.frames[:, :10], 0)

    def _print(self, txt: str, lvl: int = 0) -> None:
        if lvl <= self.debug:
            print(txt)

    def assemble_data(self, augment, labeled_data: np.ndarray, unlabeled_data: np.ndarray, pc_size: int = 1024,
                      n_samples: int = 5, shuffle_markers: bool = False):
        """
        Assemble the various tensors.
        :param augment: Torch function to use for the filler markers. Examples are `torch.rand`, `torch.ones`, etc.
        :param labeled_data: `np.ndarray` that contains the data of the labeled markers.
        :param unlabeled_data: `np.ndarray` that contains the data of the unlabeled markers.
        :param pc_size: `int` amount of points to put in the point cloud.
        :param n_samples: Total amount of samples to generate.
        :param shuffle_markers: `bool` whether to shuffle the markers in the point cloud.
        """
        n_samples = convert_n_samples(n_samples, len(labeled_data))
        # Initialize empty lists to store the data in.
        actor_classes, marker_classes, translations, unscaled_translations, frames = [], [], [], [], []
        for frame in range(n_samples):
            labeled = labeled_data[frame]
            unlabeled = unlabeled_data[frame]

            actor_cloud, marker_cloud, scaled_t_cloud, unscaled_t_cloud, l_frames = remove_inf_markers(
                labeled, device=self.device)

            ul_actor_cloud, ul_marker_cloud, ul_scaled_t_cloud, ul_unscaled_t_cloud, ul_frames = \
                remove_inf_markers(unlabeled, device=self.device)

            merged_actors = torch.cat([actor_cloud, ul_actor_cloud], dim=0)
            merged_markers = torch.cat([marker_cloud, ul_marker_cloud], dim=0)
            merged_translations = torch.cat([scaled_t_cloud, ul_scaled_t_cloud], dim=1)
            merged_unscaled_translations = torch.cat([unscaled_t_cloud, ul_unscaled_t_cloud], dim=1)
            merged_frames = torch.cat([l_frames, ul_frames], dim=0)

            # fill_point_clouds() uses the augment function to fill the point clouds, so we can't use it to
            # fill the unscaled translations.
            actor_cloud, marker_cloud, scaled_t_cloud, merged_frames, shuffled_idx = \
                fill_point_clouds(merged_actors, merged_markers, merged_translations, merged_frames,
                                  n_points=pc_size, augment=augment, apply_shuffle=shuffle_markers, device=self.device)

            # use fill_translation_cloud to fill the unscaled translations.
            # This is a separate function because fill_point_clouds() is also used in the TrainDataset class.
            merged_unscaled_translations, _ = fill_translation_cloud(merged_unscaled_translations, n_points=pc_size,
                                                                     augment=augment, apply_shuffle=shuffle_markers,
                                                                     shuffle=shuffled_idx, device=self.device)

            actor_classes.append(actor_cloud)
            marker_classes.append(marker_cloud)
            translations.append(scaled_t_cloud)
            unscaled_translations.append(merged_unscaled_translations)
            frames.append(merged_frames)

        # (n_samples, pc_size), (n_samples, pc_size), (n_samples, 3, pc_size).
        self.actor_classes = torch.stack(actor_classes)
        self.marker_classes = torch.stack(marker_classes)
        self.translations = torch.stack(translations)
        self.unscaled_translations = torch.stack(unscaled_translations)
        self.frames = torch.stack(frames)

    def __getitem__(self, index):
        return self.actor_classes[index], self.marker_classes[index], \
            self.translations[index], self.unscaled_translations[index], self.frames[index]

    def __len__(self):
        return len(self.actor_classes)


def does_overlap(accumulated_point_cloud: List[Tensor], new_point_cloud: Tensor,
                 max_overlap: Tuple[float, float, float] = (0.2, 0.2, 0.2)) -> bool:
    """
    Checks if a new point cloud overlaps with any of the existing point clouds.
    :param accumulated_point_cloud: List of `Tensor` of the accumulated point clouds.
    :param new_point_cloud: `Tensor` point cloud to check overlap for.
    :param max_overlap: Tuple of 3 floats to indicate allowed overlapping thresholds for each axis.
    :return: `bool` whether the new point cloud overlaps with any of the existing point clouds.
    """
    def get_bounding_box(points: Tensor) -> Tuple[Tensor, Tensor]:
        """
        Gets the bounding box values (min, max) for each axis.
        :param points: `Tensor` point cloud to analyze.
        :return: Tuple of `Tensor` of minimum and maximum values.
        """
        min_values, _ = torch.min(points, dim=1)
        max_values, _ = torch.max(points, dim=1)
        return min_values, max_values

    def check_dimensional_overlap(bb1_min: Tensor, bb1_max: Tensor, bb2_min: Tensor, bb2_max: Tensor,
                                  overlap_threshold: float = 0.2) -> bool:
        """
        Checks if two bounding boxes overlap in one axis.
        :param bb1_min: `Tensor` of minimum value for the first bounding box.
        :param bb1_max: `Tensor` of maximum value for the first bounding box.
        :param bb2_min: `Tensor` of minimum value for the second bounding box.
        :param bb2_max: `Tensor` of maximum value for the second bounding box.
        :param overlap_threshold: `float` that indicates the maximum % of overlap allowed for this axis.
        :return: `bool` whether the two bounding boxes overlap.
        """
        # Find the highest bbox minimum and the lowest bbox maximum.
        overlap_min = torch.maximum(bb1_min, bb2_min)
        overlap_max = torch.minimum(bb1_max, bb2_max)
        # Calculate the overlap length. If the bounding boxes don't overlap, this length will be negative.
        # Then we can return False right away.
        overlap_length = overlap_max - overlap_min
        if overlap_length <= 0:
            return False

        # Given that the overlap length is a positive number, we need to calculate how much overlap is happening.
        # First find the outer bounds of the both bounding boxes (lowest minimum and highest maximum).
        non_overlap_min = torch.minimum(bb1_min, bb2_min)
        non_overlap_max = torch.maximum(bb1_max, bb2_max)
        # Then calculate what fraction of the total length is the overlapping length.
        total_length = non_overlap_max - non_overlap_min
        overlap_ratio = overlap_length / total_length
        # Return whether this ratio is higher than the allowed threshold.
        return overlap_ratio > overlap_threshold

    def check_3dimensional_overlap(bb1_min: Tensor, bb1_max: Tensor, bb2_min: Tensor, bb2_max: Tensor,
                                   overlap_thresholds: Tuple[float, float, float]) -> bool:
        """
        Checks if two 3-dimensional bounding boxes overlap in the x and z axis.
        :param bb1_min: `Tensor` of minimum values for the first bounding box.
        :param bb1_max: `Tensor` of maximum values for the first bounding box.
        :param bb2_min: `Tensor` of minimum values for the second bounding box.
        :param bb2_max: `Tensor` of maximum values for the second bounding box.
        :param overlap_thresholds: Tuple of 3 `float` that indicates the maximum % of overlap allowed for all axes.
        :return: `bool` whether the two bounding boxes overlap.
        """
        x_overlap = check_dimensional_overlap(bb1_min[0], bb1_max[0], bb2_min[0], bb2_max[0], overlap_thresholds[0])
        z_overlap = check_dimensional_overlap(bb1_min[2], bb1_max[2], bb2_min[2], bb2_max[2], overlap_thresholds[2])
        # EXTRA: Check if the y axes are overlapping.
        return x_overlap and z_overlap

    # If this is the first attempt of checking an overlap, the accumulated point cloud is empty,
    # so we don't need to check any overlap.
    if not accumulated_point_cloud:
        return False

    # Find the bounding box values of the new point cloud.
    new_min, new_max = get_bounding_box(new_point_cloud)

    overlaps = []

    # Iterate through each point cloud in the accumulated list.
    for idx, pc in enumerate(accumulated_point_cloud):
        # Get the bounding box for the current cloud.
        current_min, current_max = get_bounding_box(pc)
        # Check if the new point cloud overlaps with the current cloud.
        overlaps.append(check_3dimensional_overlap(current_min, current_max, new_min, new_max, max_overlap))

    # If any axis of any point cloud overlapped, we don't want to add the point cloud.
    return any(overlaps)


if __name__ == '__main__':
    # train_dataset = TrainDataset(Path(r'G:\Firestorm\mocap-ai\data\h5\mes-1\train\IntroVideo_04_006.h5'),
    #                              n_samples=1,
    #                              max_actors=2,
    #                              pc_size=2,
    #                              use_random_max_actors=False,
    #                              use_random_translation=True,
    #                              use_random_rotation=False,
    #                              shuffle_markers=False,
    #                              max_overlap=.9)
    # print(dir(train_dataset))
    test_dataset = InfDataset(Path(r'G:\Firestorm\mocap-ai\data\h5\mes-1\test\HangoutSpot_1_001.h5'),
                              pc_size=150,
                              shuffle_markers=False,
                              debug=0)