Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,14 @@ from flask import Flask, request, jsonify
|
|
2 |
from PIL import Image
|
3 |
import base64
|
4 |
from io import BytesIO
|
5 |
-
import io
|
6 |
-
from SegCloth import segment_clothing
|
7 |
import numpy as np
|
8 |
import cv2
|
9 |
import insightface
|
10 |
import onnxruntime as ort
|
11 |
import huggingface_hub
|
12 |
|
|
|
|
|
13 |
# Charger le modèle
|
14 |
def load_model():
|
15 |
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
@@ -25,12 +25,27 @@ def load_model():
|
|
25 |
detector = load_model()
|
26 |
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Détecter les personnes et extraire les images
|
29 |
def detect_person(image):
|
30 |
img = np.array(image)
|
31 |
img = img[:, :, ::-1] # RGB -> BGR
|
32 |
|
33 |
bboxes, kpss = detector.detect(img)
|
|
|
|
|
|
|
34 |
bboxes = np.round(bboxes[:, :4]).astype(int)
|
35 |
kpss = np.round(kpss).astype(int)
|
36 |
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
|
@@ -54,49 +69,18 @@ def detect_person(image):
|
|
54 |
|
55 |
return person_images
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
# Créer une instance FastAPI
|
60 |
-
app = Flask(__name__)
|
61 |
-
|
62 |
-
def segment_image(img, clothes):
|
63 |
-
img = decode_image_from_base64(img)
|
64 |
-
return segment_clothing(img, clothes)
|
65 |
-
|
66 |
-
# Fonction pour décoder une image encodée en base64 en objet PIL.Image.Image
|
67 |
-
def decode_image_from_base64(image_data):
|
68 |
-
image_data = base64.b64decode(image_data)
|
69 |
-
image = Image.open(io.BytesIO(image_data))
|
70 |
-
return image
|
71 |
-
|
72 |
-
def encode_image_to_base64(image):
|
73 |
-
buffered = BytesIO()
|
74 |
-
image.save(buffered, format="PNG")
|
75 |
-
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
76 |
-
|
77 |
-
@app.get("/")
|
78 |
-
def root():
|
79 |
-
return "Welcome to Fashion Clothing Detectiony API!"
|
80 |
-
|
81 |
-
# Route pour l'API REST
|
82 |
-
@app.route('/api/classify', methods=['POST'])
|
83 |
-
def classify():
|
84 |
-
data = request.json
|
85 |
-
print(data)
|
86 |
-
clothes = ["Hat", "Upper-clothes", "Skirt", "Pants", "Dress"]
|
87 |
-
image = data['image']
|
88 |
-
result = segment_image(image,clothes)
|
89 |
-
return jsonify({'result': result})
|
90 |
-
|
91 |
@app.route('/api/detect', methods=['POST'])
|
92 |
def detect():
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
-
app.run(debug=True, host="0.0.0.0", port=7860)
|
|
|
2 |
from PIL import Image
|
3 |
import base64
|
4 |
from io import BytesIO
|
|
|
|
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
import insightface
|
8 |
import onnxruntime as ort
|
9 |
import huggingface_hub
|
10 |
|
11 |
+
app = Flask(__name__)
|
12 |
+
|
13 |
# Charger le modèle
|
14 |
def load_model():
|
15 |
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
|
|
25 |
detector = load_model()
|
26 |
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
27 |
|
28 |
+
# Fonction pour décoder une image encodée en base64 en objet PIL.Image.Image
|
29 |
+
def decode_image_from_base64(image_data):
|
30 |
+
image_data = base64.b64decode(image_data)
|
31 |
+
image = Image.open(BytesIO(image_data)).convert("RGB") # Convertir en RGB pour éviter les problèmes de canal alpha
|
32 |
+
return image
|
33 |
+
|
34 |
+
# Fonction pour encoder une image PIL en base64
|
35 |
+
def encode_image_to_base64(image):
|
36 |
+
buffered = BytesIO()
|
37 |
+
image.save(buffered, format="PNG")
|
38 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
39 |
+
|
40 |
# Détecter les personnes et extraire les images
|
41 |
def detect_person(image):
|
42 |
img = np.array(image)
|
43 |
img = img[:, :, ::-1] # RGB -> BGR
|
44 |
|
45 |
bboxes, kpss = detector.detect(img)
|
46 |
+
if bboxes.shape[0] == 0: # Aucun visage détecté
|
47 |
+
return []
|
48 |
+
|
49 |
bboxes = np.round(bboxes[:, :4]).astype(int)
|
50 |
kpss = np.round(kpss).astype(int)
|
51 |
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
|
|
|
69 |
|
70 |
return person_images
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
@app.route('/api/detect', methods=['POST'])
|
73 |
def detect():
|
74 |
+
try:
|
75 |
+
data = request.json
|
76 |
+
image_base64 = data['image']
|
77 |
+
image = decode_image_from_base64(image_base64)
|
78 |
+
|
79 |
+
person_images_base64 = detect_person(image)
|
80 |
+
|
81 |
+
return jsonify({'images': person_images_base64})
|
82 |
+
except Exception as e:
|
83 |
+
return jsonify({'error': str(e)}), 500
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
+
app.run(debug=True, host="0.0.0.0", port=7860)
|