Update app.py
Browse files
app.py
CHANGED
@@ -137,12 +137,21 @@ def demo():
|
|
137 |
vector_db = gr.State()
|
138 |
qa_chain = gr.State()
|
139 |
|
140 |
-
gr.HTML("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. <b>Please do not upload confidential documents.</b>""")
|
142 |
|
143 |
with gr.Row():
|
144 |
-
# Left Column (
|
145 |
-
with gr.Column(scale=1):
|
146 |
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
|
147 |
document = gr.Files(height=140, file_count="multiple", file_types=[".pdf"], interactive=True, label="Upload PDF documents")
|
148 |
db_btn = gr.Button("Create vector DB")
|
@@ -159,6 +168,8 @@ def demo():
|
|
159 |
qachain_btn = gr.Button("Initialize QA Chatbot")
|
160 |
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
|
161 |
|
|
|
|
|
162 |
# Right Column (wide)
|
163 |
with gr.Column(scale=8):
|
164 |
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
@@ -196,5 +207,6 @@ def demo():
|
|
196 |
|
197 |
|
198 |
|
|
|
199 |
if __name__ == "__main__":
|
200 |
demo()
|
|
|
137 |
vector_db = gr.State()
|
138 |
qa_chain = gr.State()
|
139 |
|
140 |
+
gr.HTML("""
|
141 |
+
<style>
|
142 |
+
.gr-block.gr-box:nth-child(1) {
|
143 |
+
max-width: 180px;
|
144 |
+
flex: 0 0 180px !important;
|
145 |
+
}
|
146 |
+
</style>
|
147 |
+
<center><h1>RAG PDF chatbot</h1></center>
|
148 |
+
""")
|
149 |
+
|
150 |
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. <b>Please do not upload confidential documents.</b>""")
|
151 |
|
152 |
with gr.Row():
|
153 |
+
# Left Column (force narrow with CSS)
|
154 |
+
with gr.Column(scale=1) as left_col:
|
155 |
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
|
156 |
document = gr.Files(height=140, file_count="multiple", file_types=[".pdf"], interactive=True, label="Upload PDF documents")
|
157 |
db_btn = gr.Button("Create vector DB")
|
|
|
168 |
qachain_btn = gr.Button("Initialize QA Chatbot")
|
169 |
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
|
170 |
|
171 |
+
left_col.style(container=True)
|
172 |
+
|
173 |
# Right Column (wide)
|
174 |
with gr.Column(scale=8):
|
175 |
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
|
|
207 |
|
208 |
|
209 |
|
210 |
+
|
211 |
if __name__ == "__main__":
|
212 |
demo()
|