MuhammadQASIM111 commited on
Commit
3ed12ed
·
verified ·
1 Parent(s): 67f43d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -7,16 +7,15 @@ import streamlit as st
7
  import torch
8
 
9
  # Load the BillSum dataset
10
-
11
-
12
  ds = load_dataset("FiscalNote/billsum")
 
13
  # Initialize models
14
  sbert_model = SentenceTransformer("all-mpnet-base-v2")
15
  t5_tokenizer = AutoTokenizer.from_pretrained("t5-small")
16
- t5_model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
17
 
18
  # Prepare data and build FAISS index
19
- texts = dataset["text"][:100] # Limiting to 100 samples for speed
20
  case_embeddings = sbert_model.encode(texts, convert_to_tensor=True, show_progress_bar=True)
21
 
22
  # Convert embeddings to numpy array and handle deprecation warning
 
7
  import torch
8
 
9
  # Load the BillSum dataset
 
 
10
  ds = load_dataset("FiscalNote/billsum")
11
+
12
  # Initialize models
13
  sbert_model = SentenceTransformer("all-mpnet-base-v2")
14
  t5_tokenizer = AutoTokenizer.from_pretrained("t5-small")
15
+ t5_model = AutoAutoModelForSeq2SeqLM.from_pretrained("t5-small")
16
 
17
  # Prepare data and build FAISS index
18
+ texts = ds["train"]["text"][:100] # Limiting to 100 samples for speed, and selecting the train split.
19
  case_embeddings = sbert_model.encode(texts, convert_to_tensor=True, show_progress_bar=True)
20
 
21
  # Convert embeddings to numpy array and handle deprecation warning