Spaces:
Running
Running
update main
Browse files
main.py
CHANGED
@@ -36,10 +36,10 @@ app.add_middleware(
|
|
36 |
|
37 |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
38 |
try:
|
39 |
-
interpreter =
|
40 |
-
interpreter_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
41 |
-
interpreter_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
42 |
-
interpreter_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
43 |
except Exception as exp:
|
44 |
print("[ERROR] Can't load nlpconnect/vit-gpt2-image-captioning")
|
45 |
print(str(exp))
|
@@ -63,7 +63,7 @@ except Exception as exp:
|
|
63 |
|
64 |
|
65 |
try:
|
66 |
-
generator = pipeline("text-generation", model="deepseek-ai/deepseek-coder-1.3b-instruct"
|
67 |
except Exception as exp:
|
68 |
print("[ERROR] Can't load deepseek-ai/deepseek-coder-1.3b-instruct ")
|
69 |
print(str(exp))
|
@@ -93,17 +93,7 @@ def index(req:Request):
|
|
93 |
def index(req:Request):
|
94 |
return templates.TemplateResponse('ImageInterpretation.html',{'request':req})
|
95 |
|
96 |
-
@app.post("/caption2")
|
97 |
-
async def generate_caption(file: UploadFile = File(...)):
|
98 |
-
contents = await file.read()
|
99 |
-
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
100 |
|
101 |
-
# توليد caption
|
102 |
-
pixel_values = interpreter_processor(images=image, return_tensors="pt").pixel_values
|
103 |
-
output_ids = interpreter_model.generate(pixel_values, max_length=16, num_beams=4)
|
104 |
-
caption = interpreter_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
105 |
-
|
106 |
-
return {"caption": caption}
|
107 |
@app.post('/get')
|
108 |
def g(f:str):
|
109 |
return generator(f)[0]["generated_text"]
|
|
|
36 |
|
37 |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
38 |
try:
|
39 |
+
interpreter =pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
40 |
+
#interpreter_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
41 |
+
#interpreter_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
42 |
+
#interpreter_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
43 |
except Exception as exp:
|
44 |
print("[ERROR] Can't load nlpconnect/vit-gpt2-image-captioning")
|
45 |
print(str(exp))
|
|
|
63 |
|
64 |
|
65 |
try:
|
66 |
+
generator = pipeline("text-generation", model="deepseek-ai/deepseek-coder-1.3b-instruct")
|
67 |
except Exception as exp:
|
68 |
print("[ERROR] Can't load deepseek-ai/deepseek-coder-1.3b-instruct ")
|
69 |
print(str(exp))
|
|
|
93 |
def index(req:Request):
|
94 |
return templates.TemplateResponse('ImageInterpretation.html',{'request':req})
|
95 |
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
@app.post('/get')
|
98 |
def g(f:str):
|
99 |
return generator(f)[0]["generated_text"]
|