Leo Liu
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,61 +3,85 @@ import torch
|
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torchaudio
|
5 |
import os
|
6 |
-
import
|
7 |
-
import
|
|
|
8 |
|
9 |
-
# Device setup
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
# Load Whisper model for
|
13 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
14 |
language = "zh"
|
15 |
-
pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
17 |
|
18 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def transcribe_audio(audio_path):
|
20 |
waveform, sample_rate = torchaudio.load(audio_path)
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
if duration > 60:
|
|
|
|
|
23 |
results = []
|
24 |
-
|
25 |
-
|
26 |
-
chunk = waveform[
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
results.append(
|
31 |
-
|
32 |
-
return " ".join(results)
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
sentiment_pipe = pipeline("text-classification", model="Leo0129/CustomModel-multilingual-sentiment-analysis", device=device)
|
37 |
|
38 |
-
#
|
39 |
-
def split_text(text, max_length=512):
|
40 |
-
words = list(jieba.cut(text))
|
41 |
-
chunks, current_chunk = [], ""
|
42 |
-
for word in words:
|
43 |
-
if len(current_chunk) + len(word) < max_length:
|
44 |
-
current_chunk += word
|
45 |
-
else:
|
46 |
-
chunks.append(current_chunk)
|
47 |
-
current_chunk = word
|
48 |
-
if current_chunk:
|
49 |
-
chunks.append(current_chunk)
|
50 |
-
return chunks
|
51 |
-
|
52 |
-
# Function to rate sentiment quality based on most frequent result
|
53 |
def rate_quality(text):
|
54 |
-
chunks =
|
55 |
-
results =
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
return max(set(
|
61 |
|
62 |
# Streamlit main interface
|
63 |
def main():
|
@@ -66,7 +90,6 @@ def main():
|
|
66 |
# Custom CSS styling
|
67 |
st.markdown("""
|
68 |
<style>
|
69 |
-
@import url('https://fonts.googleapis.com/css2?family=Comic+Neue:wght@700&display=swap');
|
70 |
.header {
|
71 |
background: linear-gradient(45deg, #FF9A6C, #FF6B6B);
|
72 |
border-radius: 15px;
|
@@ -75,38 +98,19 @@ def main():
|
|
75 |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
76 |
margin-bottom: 2rem;
|
77 |
}
|
78 |
-
.subtitle {
|
79 |
-
font-family: 'Comic Neue', cursive;
|
80 |
-
color: #4B4B4B;
|
81 |
-
font-size: 1.2rem;
|
82 |
-
margin: 1rem 0;
|
83 |
-
padding: 1rem;
|
84 |
-
background: rgba(255,255,255,0.9);
|
85 |
-
border-radius: 10px;
|
86 |
-
border-left: 5px solid #FF6B6B;
|
87 |
-
}
|
88 |
</style>
|
89 |
""", unsafe_allow_html=True)
|
90 |
|
91 |
-
# Header
|
92 |
st.markdown("""
|
93 |
<div class="header">
|
94 |
<h1 style='margin:0;'>ποΈ Customer Service Quality Analyzer</h1>
|
95 |
-
<p style='color: white;
|
96 |
</div>
|
97 |
""", unsafe_allow_html=True)
|
98 |
|
99 |
-
|
100 |
-
uploaded_file = st.file_uploader("π€ Please upload your Cantonese customer service audio file", type=["wav", "mp3", "flac"])
|
101 |
|
102 |
if uploaded_file is not None:
|
103 |
-
file_type = magic.from_buffer(uploaded_file.read(), mime=True)
|
104 |
-
uploaded_file.seek(0)
|
105 |
-
if not file_type.startswith("audio/"):
|
106 |
-
st.error("β οΈ Sorry, the uploaded file format is not supported. Please upload an audio file.")
|
107 |
-
return
|
108 |
-
|
109 |
-
st.audio(uploaded_file, format="audio/wav")
|
110 |
temp_audio_path = "uploaded_audio.wav"
|
111 |
with open(temp_audio_path, "wb") as f:
|
112 |
f.write(uploaded_file.getbuffer())
|
@@ -114,25 +118,23 @@ def main():
|
|
114 |
progress_bar = st.progress(0)
|
115 |
|
116 |
# Step 1: Audio transcription
|
117 |
-
with st.spinner('π Step 1: Transcribing audio, please wait...
|
118 |
transcript = transcribe_audio(temp_audio_path)
|
119 |
progress_bar.progress(50)
|
120 |
st.write("**Transcript:**", transcript)
|
121 |
|
122 |
# Step 2: Sentiment Analysis
|
123 |
-
with st.spinner('π§ββοΈ Step 2: Analyzing sentiment, please wait...
|
124 |
quality_rating = rate_quality(transcript)
|
125 |
progress_bar.progress(100)
|
126 |
st.write("**Sentiment Analysis Result:**", quality_rating)
|
127 |
|
128 |
-
# Download analysis results
|
129 |
result_text = f"Transcript:\n{transcript}\n\nSentiment Analysis Result: {quality_rating}"
|
130 |
st.download_button(label="π₯ Download Analysis Report", data=result_text, file_name="analysis_report.txt")
|
131 |
|
132 |
-
|
133 |
-
st.markdown("βIf you encounter any issues, please contact customer support: π§ **support@hellotoby.com**")
|
134 |
|
135 |
os.remove(temp_audio_path)
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
-
main()
|
|
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torchaudio
|
5 |
import os
|
6 |
+
import re
|
7 |
+
from difflib import SequenceMatcher
|
8 |
+
import numpy as np
|
9 |
|
10 |
+
# Device setup
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Load Whisper model with adjusted parameters for better memory handling
|
14 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
15 |
language = "zh"
|
16 |
+
pipe = pipeline(
|
17 |
+
task="automatic-speech-recognition",
|
18 |
+
model=MODEL_NAME,
|
19 |
+
chunk_length_s=30,
|
20 |
+
device=device,
|
21 |
+
generate_kwargs={
|
22 |
+
"no_repeat_ngram_size": 3,
|
23 |
+
"repetition_penalty": 1.3,
|
24 |
+
"temperature": 0.7,
|
25 |
+
"top_p": 0.9,
|
26 |
+
"top_k": 50
|
27 |
+
}
|
28 |
+
)
|
29 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
30 |
|
31 |
+
# Similarity check to remove repeated phrases
|
32 |
+
def is_similar(a, b, threshold=0.8):
|
33 |
+
return SequenceMatcher(None, a, b).ratio() > threshold
|
34 |
+
|
35 |
+
def remove_repeated_phrases(text):
|
36 |
+
sentences = re.split(r'(?<=[γοΌοΌ])', text)
|
37 |
+
cleaned_sentences = []
|
38 |
+
for sentence in sentences:
|
39 |
+
if not cleaned_sentences or not is_similar(sentence.strip(), cleaned_sentences[-1].strip()):
|
40 |
+
cleaned_sentences.append(sentence.strip())
|
41 |
+
return " ".join(cleaned_sentences)
|
42 |
+
|
43 |
+
# Remove punctuation
|
44 |
+
def remove_punctuation(text):
|
45 |
+
return re.sub(r'[^\w\s]', '', text)
|
46 |
+
|
47 |
+
# Transcription function (adjusted for punctuation and repetition removal)
|
48 |
def transcribe_audio(audio_path):
|
49 |
waveform, sample_rate = torchaudio.load(audio_path)
|
50 |
+
|
51 |
+
if waveform.shape[0] > 1:
|
52 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
53 |
+
|
54 |
+
waveform = waveform.squeeze(0).numpy()
|
55 |
+
|
56 |
+
duration = waveform.shape[0] / sample_rate
|
57 |
if duration > 60:
|
58 |
+
chunk_size = sample_rate * 55
|
59 |
+
step_size = sample_rate * 50
|
60 |
results = []
|
61 |
+
|
62 |
+
for start in range(0, waveform.shape[0], step_size):
|
63 |
+
chunk = waveform[start:start + chunk_size]
|
64 |
+
if chunk.shape[0] == 0:
|
65 |
+
break
|
66 |
+
transcript = pipe({"sampling_rate": sample_rate, "raw": chunk})["text"]
|
67 |
+
results.append(remove_punctuation(transcript))
|
68 |
+
|
69 |
+
return remove_punctuation(remove_repeated_phrases(" ".join(results)))
|
70 |
+
|
71 |
+
return remove_punctuation(remove_repeated_phrases(pipe({"sampling_rate": sample_rate, "raw": waveform})["text"]))
|
72 |
+
|
73 |
+
# Sentiment analysis model
|
74 |
sentiment_pipe = pipeline("text-classification", model="Leo0129/CustomModel-multilingual-sentiment-analysis", device=device)
|
75 |
|
76 |
+
# Rate sentiment with batch processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def rate_quality(text):
|
78 |
+
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
79 |
+
results = sentiment_pipe(chunks, batch_size=4)
|
80 |
+
|
81 |
+
label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"}
|
82 |
+
processed_results = [label_map.get(res["label"], "Unknown") for res in results]
|
83 |
+
|
84 |
+
return max(set(processed_results), key=processed_results.count)
|
85 |
|
86 |
# Streamlit main interface
|
87 |
def main():
|
|
|
90 |
# Custom CSS styling
|
91 |
st.markdown("""
|
92 |
<style>
|
|
|
93 |
.header {
|
94 |
background: linear-gradient(45deg, #FF9A6C, #FF6B6B);
|
95 |
border-radius: 15px;
|
|
|
98 |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
99 |
margin-bottom: 2rem;
|
100 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
</style>
|
102 |
""", unsafe_allow_html=True)
|
103 |
|
|
|
104 |
st.markdown("""
|
105 |
<div class="header">
|
106 |
<h1 style='margin:0;'>ποΈ Customer Service Quality Analyzer</h1>
|
107 |
+
<p style='color: white;'>Evaluate the service quality with simple uploading!</p>
|
108 |
</div>
|
109 |
""", unsafe_allow_html=True)
|
110 |
|
111 |
+
uploaded_file = st.file_uploader("π€ Please upload your Cantonese customer service audio file", type=["wav", "mp3", "flac"])
|
|
|
112 |
|
113 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
temp_audio_path = "uploaded_audio.wav"
|
115 |
with open(temp_audio_path, "wb") as f:
|
116 |
f.write(uploaded_file.getbuffer())
|
|
|
118 |
progress_bar = st.progress(0)
|
119 |
|
120 |
# Step 1: Audio transcription
|
121 |
+
with st.spinner('π Step 1: Transcribing audio, please wait...'):
|
122 |
transcript = transcribe_audio(temp_audio_path)
|
123 |
progress_bar.progress(50)
|
124 |
st.write("**Transcript:**", transcript)
|
125 |
|
126 |
# Step 2: Sentiment Analysis
|
127 |
+
with st.spinner('π§ββοΈ Step 2: Analyzing sentiment, please wait...'):
|
128 |
quality_rating = rate_quality(transcript)
|
129 |
progress_bar.progress(100)
|
130 |
st.write("**Sentiment Analysis Result:**", quality_rating)
|
131 |
|
|
|
132 |
result_text = f"Transcript:\n{transcript}\n\nSentiment Analysis Result: {quality_rating}"
|
133 |
st.download_button(label="π₯ Download Analysis Report", data=result_text, file_name="analysis_report.txt")
|
134 |
|
135 |
+
st.markdown("βIf you encounter any issues, please contact customer support: π§ **abc@hellotoby.com**")
|
|
|
136 |
|
137 |
os.remove(temp_audio_path)
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
+
main()
|