Leo Liu
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from transformers import pipeline, AutoTokenizer,
|
4 |
import torchaudio
|
5 |
import os
|
6 |
-
import re
|
7 |
import jieba
|
8 |
|
9 |
-
# Device setup:
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
#
|
13 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
14 |
language = "zh"
|
15 |
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=60, device=device)
|
16 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
17 |
|
|
|
18 |
def transcribe_audio(audio_path):
|
19 |
-
"""
|
20 |
-
对音频文件进行转录,支持大于60秒的音频分段处理
|
21 |
-
"""
|
22 |
waveform, sample_rate = torchaudio.load(audio_path)
|
23 |
duration = waveform.shape[1] / sample_rate
|
24 |
if duration > 60:
|
@@ -34,33 +31,11 @@ def transcribe_audio(audio_path):
|
|
34 |
return " ".join(results)
|
35 |
return pipe(audio_path)["text"]
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("botisan-ai/mt5-translate-yue-zh").to(device)
|
40 |
-
|
41 |
-
def split_sentences(text):
|
42 |
-
"""根据中文标点分割句子"""
|
43 |
-
return [s for s in re.split(r'(?<=[。!?])', text) if s]
|
44 |
-
|
45 |
-
def translate(text):
|
46 |
-
"""
|
47 |
-
将转录文本翻译为中文,逐句翻译后拼接输出
|
48 |
-
"""
|
49 |
-
sentences = split_sentences(text)
|
50 |
-
translations = []
|
51 |
-
for sentence in sentences:
|
52 |
-
inputs = tokenizer(sentence, return_tensors="pt").to(device)
|
53 |
-
outputs = model.generate(inputs["input_ids"], max_length=1000, num_beams=5)
|
54 |
-
translations.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
55 |
-
return " ".join(translations)
|
56 |
-
|
57 |
-
# 加载质量评分模型,用于评价对话质量
|
58 |
-
rating_pipe = pipeline("text-classification", model="Leo0129/CustomModel_dianping-chinese")
|
59 |
|
|
|
60 |
def split_text(text, max_length=512):
|
61 |
-
"""
|
62 |
-
将文本按照最大长度拆分成多个片段,使用 jieba 分词
|
63 |
-
"""
|
64 |
words = list(jieba.cut(text))
|
65 |
chunks, current_chunk = [], ""
|
66 |
for word in words:
|
@@ -73,23 +48,21 @@ def split_text(text, max_length=512):
|
|
73 |
chunks.append(current_chunk)
|
74 |
return chunks
|
75 |
|
|
|
76 |
def rate_quality(text):
|
77 |
-
"""
|
78 |
-
对翻译后的文本进行质量评价,返回最频繁的评分结果
|
79 |
-
"""
|
80 |
chunks = split_text(text)
|
81 |
results = []
|
82 |
for chunk in chunks:
|
83 |
-
result =
|
84 |
-
label_map = {"
|
85 |
results.append(label_map.get(result["label"], "Unknown"))
|
86 |
return max(set(results), key=results.count)
|
87 |
|
|
|
88 |
def main():
|
89 |
-
# 设置页面配置和图标,吸引用户注意
|
90 |
st.set_page_config(page_title="Customer Service Quality Analyzer", page_icon="🎙️")
|
91 |
-
|
92 |
-
#
|
93 |
st.markdown("""
|
94 |
<style>
|
95 |
@import url('https://fonts.googleapis.com/css2?family=Comic+Neue:wght@700&display=swap');
|
@@ -113,49 +86,39 @@ def main():
|
|
113 |
}
|
114 |
</style>
|
115 |
""", unsafe_allow_html=True)
|
116 |
-
|
117 |
-
#
|
118 |
st.markdown("""
|
119 |
<div class="header">
|
120 |
<h1 style='margin:0;'>🎙️ Customer Service Quality Analyzer</h1>
|
121 |
<p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple-uploading!</p>
|
122 |
</div>
|
123 |
""", unsafe_allow_html=True)
|
124 |
-
|
125 |
-
#
|
126 |
uploaded_file = st.file_uploader("👉🏻 Upload your Cantonese audio file here...", type=["wav", "mp3", "flac"])
|
127 |
-
|
128 |
if uploaded_file is not None:
|
129 |
-
# 直接播放上传的音频
|
130 |
st.audio(uploaded_file, format="audio/wav")
|
131 |
-
# 将上传的文件保存为临时文件
|
132 |
temp_audio_path = "uploaded_audio.wav"
|
133 |
with open(temp_audio_path, "wb") as f:
|
134 |
f.write(uploaded_file.getbuffer())
|
135 |
-
|
136 |
-
# 初始化进度条和状态提示区域
|
137 |
progress_bar = st.progress(0)
|
138 |
status_container = st.empty()
|
139 |
-
|
140 |
-
# Step 1:
|
141 |
-
status_container.info("📝 **Step 1/
|
142 |
transcript = transcribe_audio(temp_audio_path)
|
143 |
-
progress_bar.progress(
|
144 |
st.write("**Transcript:**", transcript)
|
145 |
-
|
146 |
-
# Step 2:
|
147 |
-
status_container.info("
|
148 |
-
|
149 |
-
progress_bar.progress(66)
|
150 |
-
st.write("**Translation:**", translated_text)
|
151 |
-
|
152 |
-
# Step 3: 音频质量评分
|
153 |
-
status_container.info("🧑⚖️ **Step 3/3**: Evaluating audio quality...")
|
154 |
-
quality_rating = rate_quality(translated_text)
|
155 |
progress_bar.progress(100)
|
156 |
-
st.write("**
|
157 |
-
|
158 |
-
# 处理完成后删除临时文件
|
159 |
os.remove(temp_audio_path)
|
160 |
|
161 |
if __name__ == "__main__":
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torchaudio
|
5 |
import os
|
|
|
6 |
import jieba
|
7 |
|
8 |
+
# Device setup: automatically selects CUDA or CPU
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# Load Whisper model for Cantonese audio transcription
|
12 |
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
13 |
language = "zh"
|
14 |
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=60, device=device)
|
15 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
16 |
|
17 |
+
# Transcription function (supports long audio)
|
18 |
def transcribe_audio(audio_path):
|
|
|
|
|
|
|
19 |
waveform, sample_rate = torchaudio.load(audio_path)
|
20 |
duration = waveform.shape[1] / sample_rate
|
21 |
if duration > 60:
|
|
|
31 |
return " ".join(results)
|
32 |
return pipe(audio_path)["text"]
|
33 |
|
34 |
+
# Load sentiment analysis model (Custom multilingual sentiment analysis)
|
35 |
+
sentiment_pipe = pipeline("text-classification", model="CustomModel-multilingual-sentiment-analysis", device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Text splitting function (using jieba for Chinese text)
|
38 |
def split_text(text, max_length=512):
|
|
|
|
|
|
|
39 |
words = list(jieba.cut(text))
|
40 |
chunks, current_chunk = [], ""
|
41 |
for word in words:
|
|
|
48 |
chunks.append(current_chunk)
|
49 |
return chunks
|
50 |
|
51 |
+
# Function to rate sentiment quality based on most frequent result
|
52 |
def rate_quality(text):
|
|
|
|
|
|
|
53 |
chunks = split_text(text)
|
54 |
results = []
|
55 |
for chunk in chunks:
|
56 |
+
result = sentiment_pipe(chunk)[0]
|
57 |
+
label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"}
|
58 |
results.append(label_map.get(result["label"], "Unknown"))
|
59 |
return max(set(results), key=results.count)
|
60 |
|
61 |
+
# Streamlit main interface
|
62 |
def main():
|
|
|
63 |
st.set_page_config(page_title="Customer Service Quality Analyzer", page_icon="🎙️")
|
64 |
+
|
65 |
+
# Custom CSS styling
|
66 |
st.markdown("""
|
67 |
<style>
|
68 |
@import url('https://fonts.googleapis.com/css2?family=Comic+Neue:wght@700&display=swap');
|
|
|
86 |
}
|
87 |
</style>
|
88 |
""", unsafe_allow_html=True)
|
89 |
+
|
90 |
+
# Header
|
91 |
st.markdown("""
|
92 |
<div class="header">
|
93 |
<h1 style='margin:0;'>🎙️ Customer Service Quality Analyzer</h1>
|
94 |
<p style='color: white; font-size: 1.2rem;'>Evaluate the service quality with simple-uploading!</p>
|
95 |
</div>
|
96 |
""", unsafe_allow_html=True)
|
97 |
+
|
98 |
+
# Audio file uploader
|
99 |
uploaded_file = st.file_uploader("👉🏻 Upload your Cantonese audio file here...", type=["wav", "mp3", "flac"])
|
100 |
+
|
101 |
if uploaded_file is not None:
|
|
|
102 |
st.audio(uploaded_file, format="audio/wav")
|
|
|
103 |
temp_audio_path = "uploaded_audio.wav"
|
104 |
with open(temp_audio_path, "wb") as f:
|
105 |
f.write(uploaded_file.getbuffer())
|
106 |
+
|
|
|
107 |
progress_bar = st.progress(0)
|
108 |
status_container = st.empty()
|
109 |
+
|
110 |
+
# Step 1: Audio transcription
|
111 |
+
status_container.info("📝 **Step 1/2**: Transcribing audio...")
|
112 |
transcript = transcribe_audio(temp_audio_path)
|
113 |
+
progress_bar.progress(50)
|
114 |
st.write("**Transcript:**", transcript)
|
115 |
+
|
116 |
+
# Step 2: Sentiment Analysis
|
117 |
+
status_container.info("🧑⚖️ **Step 2/2**: Evaluating sentiment quality...")
|
118 |
+
quality_rating = rate_quality(transcript)
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
progress_bar.progress(100)
|
120 |
+
st.write("**Sentiment Rating:**", quality_rating)
|
121 |
+
|
|
|
122 |
os.remove(temp_audio_path)
|
123 |
|
124 |
if __name__ == "__main__":
|