Leo Liu
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import torchaudio
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import jieba
|
8 |
+
|
9 |
+
# Device setup: 自动选择使用 CUDA 或 CPU
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# 加载 Whisper 模型,用于音频转录(粤语版)
|
13 |
+
MODEL_NAME = "alvanlii/whisper-small-cantonese"
|
14 |
+
language = "zh"
|
15 |
+
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=60, device=device)
|
16 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
|
17 |
+
|
18 |
+
def transcribe_audio(audio_path):
|
19 |
+
"""
|
20 |
+
对音频文件进行转录,支持大于60秒的音频分段处理
|
21 |
+
"""
|
22 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
23 |
+
duration = waveform.shape[1] / sample_rate
|
24 |
+
if duration > 60:
|
25 |
+
results = []
|
26 |
+
for start in range(0, int(duration), 50):
|
27 |
+
end = min(start + 60, int(duration))
|
28 |
+
chunk = waveform[:, start * sample_rate:end * sample_rate]
|
29 |
+
temp_filename = f"temp_chunk_{start}.wav"
|
30 |
+
torchaudio.save(temp_filename, chunk, sample_rate)
|
31 |
+
result = pipe(temp_filename)["text"]
|
32 |
+
results.append(result)
|
33 |
+
os.remove(temp_filename)
|
34 |
+
return " ".join(results)
|
35 |
+
return pipe(audio_path)["text"]
|
36 |
+
|
37 |
+
# 加载翻译模型(粤语到中文)
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("botisan-ai/mt5-translate-yue-zh")
|
39 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("botisan-ai/mt5-translate-yue-zh").to(device)
|
40 |
+
|
41 |
+
def split_sentences(text):
|
42 |
+
"""根据中文标点分割句子"""
|
43 |
+
return [s for s in re.split(r'(?<=[。!?])', text) if s]
|
44 |
+
|
45 |
+
def translate(text):
|
46 |
+
"""
|
47 |
+
将转录文本翻译为中文,逐句翻译后拼接输出
|
48 |
+
"""
|
49 |
+
sentences = split_sentences(text)
|
50 |
+
translations = []
|
51 |
+
for sentence in sentences:
|
52 |
+
inputs = tokenizer(sentence, return_tensors="pt").to(device)
|
53 |
+
outputs = model.generate(inputs["input_ids"], max_length=1000, num_beams=5)
|
54 |
+
translations.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
55 |
+
return " ".join(translations)
|
56 |
+
|
57 |
+
# 加载质量评分模型,用于评价对话质量
|
58 |
+
rating_pipe = pipeline("text-classification", model="Leo0129/CustomModel_dianping-chinese")
|
59 |
+
|
60 |
+
def split_text(text, max_length=512):
|
61 |
+
"""
|
62 |
+
将文本按照最大长度拆分成多个片段,使用 jieba 分词
|
63 |
+
"""
|
64 |
+
words = list(jieba.cut(text))
|
65 |
+
chunks, current_chunk = [], ""
|
66 |
+
for word in words:
|
67 |
+
if len(current_chunk) + len(word) < max_length:
|
68 |
+
current_chunk += word
|
69 |
+
else:
|
70 |
+
chunks.append(current_chunk)
|
71 |
+
current_chunk = word
|
72 |
+
if current_chunk:
|
73 |
+
chunks.append(current_chunk)
|
74 |
+
return chunks
|
75 |
+
|
76 |
+
def rate_quality(text):
|
77 |
+
"""
|
78 |
+
对翻译后的文本进行质量评价,返回最频繁的评分结果
|
79 |
+
"""
|
80 |
+
chunks = split_text(text)
|
81 |
+
results = []
|
82 |
+
for chunk in chunks:
|
83 |
+
result = rating_pipe(chunk)[0]
|
84 |
+
label_map = {"LABEL_0": "Poor", "LABEL_1": "Neutral", "LABEL_2": "Good"}
|
85 |
+
results.append(label_map.get(result["label"], "Unknown"))
|
86 |
+
return max(set(results), key=results.count)
|
87 |
+
|
88 |
+
def main():
|
89 |
+
# 设置页面配置和图标,吸引用户注意
|
90 |
+
st.set_page_config(page_title="Cantonese Audio Analyzer", page_icon="🎙️")
|
91 |
+
|
92 |
+
# 自定义 CSS 样式(引用 Comic Neue 字体,并设置背景渐变、边框圆角等效果)
|
93 |
+
st.markdown("""
|
94 |
+
<style>
|
95 |
+
@import url('https://fonts.googleapis.com/css2?family=Comic+Neue:wght@700&display=swap');
|
96 |
+
.header {
|
97 |
+
background: linear-gradient(45deg, #FF9A6C, #FF6B6B);
|
98 |
+
border-radius: 15px;
|
99 |
+
padding: 2rem;
|
100 |
+
text-align: center;
|
101 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
102 |
+
margin-bottom: 2rem;
|
103 |
+
}
|
104 |
+
.subtitle {
|
105 |
+
font-family: 'Comic Neue', cursive;
|
106 |
+
color: #4B4B4B;
|
107 |
+
font-size: 1.2rem;
|
108 |
+
margin: 1rem 0;
|
109 |
+
padding: 1rem;
|
110 |
+
background: rgba(255,255,255,0.9);
|
111 |
+
border-radius: 10px;
|
112 |
+
border-left: 5px solid #FF6B6B;
|
113 |
+
}
|
114 |
+
</style>
|
115 |
+
""", unsafe_allow_html=True)
|
116 |
+
|
117 |
+
# 页面头部展示
|
118 |
+
st.markdown("""
|
119 |
+
<div class="header">
|
120 |
+
<h1 style='margin:0;'>🎙️ Cantonese Audio Analyzer</h1>
|
121 |
+
<p style='color: white; font-size: 1.2rem;'>Transcribe, translate, and evaluate your audio magic!</p>
|
122 |
+
</div>
|
123 |
+
""", unsafe_allow_html=True)
|
124 |
+
|
125 |
+
# 上传音频文件(支持 wav、mp3、flac 格式)
|
126 |
+
uploaded_file = st.file_uploader("👉🏻 Upload your Cantonese audio file here...", type=["wav", "mp3", "flac"])
|
127 |
+
|
128 |
+
if uploaded_file is not None:
|
129 |
+
# 直接播放上传的音频
|
130 |
+
st.audio(uploaded_file, format="audio/wav")
|
131 |
+
# 将上传的文件保存为临时文件
|
132 |
+
temp_audio_path = "uploaded_audio.wav"
|
133 |
+
with open(temp_audio_path, "wb") as f:
|
134 |
+
f.write(uploaded_file.getbuffer())
|
135 |
+
|
136 |
+
# 初始化进度条和状态提示区域
|
137 |
+
progress_bar = st.progress(0)
|
138 |
+
status_container = st.empty()
|
139 |
+
|
140 |
+
# Step 1: 音频转录
|
141 |
+
status_container.info("🔮 **Step 1/3**: Transcribing audio...")
|
142 |
+
transcript = transcribe_audio(temp_audio_path)
|
143 |
+
progress_bar.progress(33)
|
144 |
+
st.write("**Transcript:**", transcript)
|
145 |
+
|
146 |
+
# Step 2: 翻译转录内容
|
147 |
+
status_container.info("📚 **Step 2/3**: Translating transcript...")
|
148 |
+
translated_text = translate(transcript)
|
149 |
+
progress_bar.progress(66)
|
150 |
+
st.write("**Translation:**", translated_text)
|
151 |
+
|
152 |
+
# Step 3: 音频质量评分
|
153 |
+
status_container.info("🎵 **Step 3/3**: Evaluating audio quality...")
|
154 |
+
quality_rating = rate_quality(translated_text)
|
155 |
+
progress_bar.progress(100)
|
156 |
+
st.write("**Quality Rating:**", quality_rating)
|
157 |
+
|
158 |
+
# 处理完成后删除临时文件
|
159 |
+
os.remove(temp_audio_path)
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
main()
|