Leo Liu commited on
Commit
0a86b5f
·
verified ·
1 Parent(s): cdbf1e7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +162 -0
app.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
4
+ import torchaudio
5
+ import os
6
+ import re
7
+ import jieba
8
+
9
+ # Device setup: 自动选择使用 CUDA 或 CPU
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+
12
+ # 加载 Whisper 模型,用于音频转录(粤语版)
13
+ MODEL_NAME = "alvanlii/whisper-small-cantonese"
14
+ language = "zh"
15
+ pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=60, device=device)
16
+ pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe")
17
+
18
+ def transcribe_audio(audio_path):
19
+ """
20
+ 对音频文件进行转录,支持大于60秒的音频分段处理
21
+ """
22
+ waveform, sample_rate = torchaudio.load(audio_path)
23
+ duration = waveform.shape[1] / sample_rate
24
+ if duration > 60:
25
+ results = []
26
+ for start in range(0, int(duration), 50):
27
+ end = min(start + 60, int(duration))
28
+ chunk = waveform[:, start * sample_rate:end * sample_rate]
29
+ temp_filename = f"temp_chunk_{start}.wav"
30
+ torchaudio.save(temp_filename, chunk, sample_rate)
31
+ result = pipe(temp_filename)["text"]
32
+ results.append(result)
33
+ os.remove(temp_filename)
34
+ return " ".join(results)
35
+ return pipe(audio_path)["text"]
36
+
37
+ # 加载翻译模型(粤语到中文)
38
+ tokenizer = AutoTokenizer.from_pretrained("botisan-ai/mt5-translate-yue-zh")
39
+ model = AutoModelForSeq2SeqLM.from_pretrained("botisan-ai/mt5-translate-yue-zh").to(device)
40
+
41
+ def split_sentences(text):
42
+ """根据中文标点分割句子"""
43
+ return [s for s in re.split(r'(?<=[。!?])', text) if s]
44
+
45
+ def translate(text):
46
+ """
47
+ 将转录文本翻译为中文,逐句翻译后拼接输出
48
+ """
49
+ sentences = split_sentences(text)
50
+ translations = []
51
+ for sentence in sentences:
52
+ inputs = tokenizer(sentence, return_tensors="pt").to(device)
53
+ outputs = model.generate(inputs["input_ids"], max_length=1000, num_beams=5)
54
+ translations.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
55
+ return " ".join(translations)
56
+
57
+ # 加载质量评分模型,用于评价对话质量
58
+ rating_pipe = pipeline("text-classification", model="Leo0129/CustomModel_dianping-chinese")
59
+
60
+ def split_text(text, max_length=512):
61
+ """
62
+ 将文本按照最大长度拆分成多个片段,使用 jieba 分词
63
+ """
64
+ words = list(jieba.cut(text))
65
+ chunks, current_chunk = [], ""
66
+ for word in words:
67
+ if len(current_chunk) + len(word) < max_length:
68
+ current_chunk += word
69
+ else:
70
+ chunks.append(current_chunk)
71
+ current_chunk = word
72
+ if current_chunk:
73
+ chunks.append(current_chunk)
74
+ return chunks
75
+
76
+ def rate_quality(text):
77
+ """
78
+ 对翻译后的文本进行质量评价,返回最频繁的评分结果
79
+ """
80
+ chunks = split_text(text)
81
+ results = []
82
+ for chunk in chunks:
83
+ result = rating_pipe(chunk)[0]
84
+ label_map = {"LABEL_0": "Poor", "LABEL_1": "Neutral", "LABEL_2": "Good"}
85
+ results.append(label_map.get(result["label"], "Unknown"))
86
+ return max(set(results), key=results.count)
87
+
88
+ def main():
89
+ # 设置页面配置和图标,吸引用户注意
90
+ st.set_page_config(page_title="Cantonese Audio Analyzer", page_icon="🎙️")
91
+
92
+ # 自定义 CSS 样式(引用 Comic Neue 字体,并设置背景渐变、边框圆角等效果)
93
+ st.markdown("""
94
+ <style>
95
+ @import url('https://fonts.googleapis.com/css2?family=Comic+Neue:wght@700&display=swap');
96
+ .header {
97
+ background: linear-gradient(45deg, #FF9A6C, #FF6B6B);
98
+ border-radius: 15px;
99
+ padding: 2rem;
100
+ text-align: center;
101
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
102
+ margin-bottom: 2rem;
103
+ }
104
+ .subtitle {
105
+ font-family: 'Comic Neue', cursive;
106
+ color: #4B4B4B;
107
+ font-size: 1.2rem;
108
+ margin: 1rem 0;
109
+ padding: 1rem;
110
+ background: rgba(255,255,255,0.9);
111
+ border-radius: 10px;
112
+ border-left: 5px solid #FF6B6B;
113
+ }
114
+ </style>
115
+ """, unsafe_allow_html=True)
116
+
117
+ # 页面头部展示
118
+ st.markdown("""
119
+ <div class="header">
120
+ <h1 style='margin:0;'>🎙️ Cantonese Audio Analyzer</h1>
121
+ <p style='color: white; font-size: 1.2rem;'>Transcribe, translate, and evaluate your audio magic!</p>
122
+ </div>
123
+ """, unsafe_allow_html=True)
124
+
125
+ # 上传音频文件(支持 wav、mp3、flac 格式)
126
+ uploaded_file = st.file_uploader("👉🏻 Upload your Cantonese audio file here...", type=["wav", "mp3", "flac"])
127
+
128
+ if uploaded_file is not None:
129
+ # 直接播放上传的音频
130
+ st.audio(uploaded_file, format="audio/wav")
131
+ # 将上传的文件保存为临时文件
132
+ temp_audio_path = "uploaded_audio.wav"
133
+ with open(temp_audio_path, "wb") as f:
134
+ f.write(uploaded_file.getbuffer())
135
+
136
+ # 初始化进度条和状态提示区域
137
+ progress_bar = st.progress(0)
138
+ status_container = st.empty()
139
+
140
+ # Step 1: 音频转录
141
+ status_container.info("🔮 **Step 1/3**: Transcribing audio...")
142
+ transcript = transcribe_audio(temp_audio_path)
143
+ progress_bar.progress(33)
144
+ st.write("**Transcript:**", transcript)
145
+
146
+ # Step 2: 翻译转录内容
147
+ status_container.info("📚 **Step 2/3**: Translating transcript...")
148
+ translated_text = translate(transcript)
149
+ progress_bar.progress(66)
150
+ st.write("**Translation:**", translated_text)
151
+
152
+ # Step 3: 音频质量评分
153
+ status_container.info("🎵 **Step 3/3**: Evaluating audio quality...")
154
+ quality_rating = rate_quality(translated_text)
155
+ progress_bar.progress(100)
156
+ st.write("**Quality Rating:**", quality_rating)
157
+
158
+ # 处理完成后删除临时文件
159
+ os.remove(temp_audio_path)
160
+
161
+ if __name__ == "__main__":
162
+ main()