Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,346 Bytes
53c0cc8 0bf31be 53c0cc8 0bf31be 53c0cc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
#!/usr/bin/env python
"""
modular_graph_and_candidates.py
================================
Create **one** rich view that combines
1. The *dependency graph* between existing **modular_*.py** implementations in
π€Β Transformers (blue/π‘) **and**
2. The list of *missing* modular models (fullβred nodes) **plus** similarity
edges (fullβred links) between highlyβoverlapping modelling files β the
output of *find_modular_candidates.py* β so you can immediately spot good
refactor opportunities.
βββΒ UsageΒ βββ
```bash
python modular_graph_and_candidates.py /path/to/transformers \
--multimodal # keep only models whose modelling code mentions
# "pixel_values" β₯Β 3 times
--sim-threshold 0.5 # Jaccard cutoff (default 0.50)
--out graph.html # output HTML file name
```
Colour legend in the generated HTML:
* π‘Β **base model**Β β has modular shards *imported* by others but no parent
* π΅Β **derived modular model**Β β has a `modular_*.py` and inherits from β₯β―1 model
* π΄Β **candidate**Β β no `modular_*.py` yet (and/or very similar to another)
* red edges = highβJaccard similarity links (potential to factorise)
"""
from __future__ import annotations
import argparse
import ast
import json
import re
import tokenize
from collections import Counter, defaultdict
from itertools import combinations
from pathlib import Path
from typing import Dict, List, Set, Tuple
from sentence_transformers import SentenceTransformer, util
from tqdm import tqdm
import numpy as np
import spaces
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# CONFIG
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SIM_DEFAULT = 0.78 # Jaccard similarity threshold
PIXEL_MIN_HITS = 0 # multimodal trigger ("pixel_values")
HTML_DEFAULT = "d3_modular_graph.html"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) Helpers to analyse *modelling* files (for similarity & multimodal filter)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _strip_source(code: str) -> str:
"""Remove docβstrings, comments and import lines to keep only the core code."""
code = re.sub(r'("""|\'\'\')(?:.|\n)*?\1', "", code) # docβstrings
code = re.sub(r"#.*", "", code) # # comments
return "\n".join(ln for ln in code.splitlines()
if not re.match(r"\s*(from|import)\s+", ln))
def _tokenise(code: str) -> Set[str]:
toks: Set[str] = set()
for tok in tokenize.generate_tokens(iter(code.splitlines(keepends=True)).__next__):
if tok.type == tokenize.NAME:
toks.add(tok.string)
return toks
def build_token_bags(models_root: Path) -> Tuple[Dict[str, List[Set[str]]], Dict[str, int]]:
"""Return tokenβbags of every `modeling_*.py` plus a pixelβvalue counter."""
bags: Dict[str, List[Set[str]]] = defaultdict(list)
pixel_hits: Dict[str, int] = defaultdict(int)
for mdl_dir in sorted(p for p in models_root.iterdir() if p.is_dir()):
for py in mdl_dir.rglob("modeling_*.py"):
try:
text = py.read_text(encoding="utfβ8")
pixel_hits[mdl_dir.name] += text.count("pixel_values")
bags[mdl_dir.name].append(_tokenise(_strip_source(text)))
except Exception as e:
print(f"β οΈ Skipped {py}: {e}")
return bags, pixel_hits
def _jaccard(a: Set[str], b: Set[str]) -> float:
return 0.0 if (not a or not b) else len(a & b) / len(a | b)
def similarity_clusters(bags: Dict[str, List[Set[str]]], thr: float) -> Dict[Tuple[str,str], float]:
"""Return {(modelA, modelB): score} for pairs with Jaccard β₯ *thr*."""
largest = {m: max(ts, key=len) for m, ts in bags.items() if ts}
out: Dict[Tuple[str,str], float] = {}
for m1, m2 in combinations(sorted(largest.keys()), 2):
s = _jaccard(largest[m1], largest[m2])
if s >= thr:
out[(m1, m2)] = s
return out
@spaces.GPU
def embedding_similarity_clusters(models_root: Path, missing: List[str], thr: float) -> Dict[Tuple[str, str], float]:
model = SentenceTransformer("nomic-ai/nomic-embed-code")
model.max_seq_length = 4096 # truncate overly long modeling files
texts = {}
for name in tqdm(missing, desc="Reading modeling files"):
code = ""
for py in (models_root / name).rglob("modeling_*.py"):
try:
code += _strip_source(py.read_text(encoding="utf-8")) + "\n"
except Exception:
continue
texts[name] = code.strip() or " "
names = list(texts)
all_embeddings = []
print("Encoding embeddings...")
batch_size = 8 # or 2 if memory is tight
for i in tqdm(range(0, len(names), batch_size), desc="Batches", leave=False):
batch = [texts[n] for n in names[i:i+batch_size]]
emb = model.encode(batch, convert_to_numpy=True, show_progress_bar=False)
all_embeddings.append(emb)
embeddings = np.vstack(all_embeddings) # [N, D]
print("Computing pairwise similarities...")
sims = embeddings @ embeddings.T # cosine since already normalized
out = {}
for i in range(len(names)):
for j in range(i + 1, len(names)):
s = sims[i, j]
if s >= thr:
out[(names[i], names[j])] = float(s)
return out
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2) Scan *modular_*.py* files to build an importβdependency graph
# β only **modeling_*** imports are considered (skip configuration / processing)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def modular_files(models_root: Path) -> List[Path]:
return [p for p in models_root.rglob("modular_*.py") if p.suffix == ".py"]
def dependency_graph(modular_files: List[Path], models_root: Path) -> Dict[str, List[Dict[str,str]]]:
"""Return {derived_model: [{source, imported_class}, ...]}
Only `modeling_*` imports are kept; anything coming from configuration/processing/
image* utils is ignored so the visual graph focuses strictly on modelling code.
Excludes edges to sources whose model name is not a model dir.
"""
model_names = {p.name for p in models_root.iterdir() if p.is_dir()}
deps: Dict[str, List[Dict[str,str]]] = defaultdict(list)
for fp in modular_files:
derived = fp.parent.name
try:
tree = ast.parse(fp.read_text(encoding="utfβ8"), filename=str(fp))
except Exception as e:
print(f"β οΈ AST parse failed for {fp}: {e}")
continue
for node in ast.walk(tree):
if not isinstance(node, ast.ImportFrom) or not node.module:
continue
mod = node.module
# keep only *modeling_* imports, drop anything else
if ("modeling_" not in mod or
"configuration_" in mod or
"processing_" in mod or
"image_processing" in mod or
"modeling_attn_mask_utils" in mod):
continue
parts = re.split(r"[./]", mod)
src = next((p for p in parts if p not in {"", "models", "transformers"}), "")
if not src or src == derived or src not in model_names:
continue
for alias in node.names:
deps[derived].append({"source": src, "imported_class": alias.name})
return dict(deps)
# modular_graph_and_candidates.py (top-level)
def build_graph_json(
transformers_dir: Path,
threshold: float = SIM_DEFAULT,
multimodal: bool = False,
sim_method: str = "jaccard",
) -> dict:
"""Return the {nodes, links} dict that D3 needs."""
models_root = transformers_dir / "src/transformers/models"
bags, pix_hits = build_token_bags(models_root)
mod_files = modular_files(models_root)
deps = dependency_graph(mod_files, models_root)
models_with_modular = {p.parent.name for p in mod_files}
missing = [m for m in bags if m not in models_with_modular]
if multimodal:
missing = [m for m in missing if pix_hits[m] >= PIXEL_MIN_HITS]
if sim_method == "jaccard":
sims = similarity_clusters({m: bags[m] for m in missing}, threshold)
else:
sims = embedding_similarity_clusters(models_root, missing, threshold)
# ---- assemble nodes & links ----
nodes: Set[str] = set()
links: List[dict] = []
for drv, lst in deps.items():
for d in lst:
links.append({
"source": d["source"],
"target": drv,
"label": f"{sum(1 for x in lst if x['source'] == d['source'])} imports",
"cand": False
})
nodes.update({d["source"], drv})
for (a, b), s in sims.items():
links.append({"source": a, "target": b, "label": f"{s*100:.1f}%", "cand": True})
nodes.update({a, b})
nodes.update(missing)
deg = Counter()
for lk in links:
deg[lk["source"]] += 1
deg[lk["target"]] += 1
max_deg = max(deg.values() or [1])
targets = {lk["target"] for lk in links if not lk["cand"]}
sources = {lk["source"] for lk in links if not lk["cand"]}
missing_only = [m for m in missing if m not in sources and m not in targets]
nodes.update(missing_only)
nodelist = []
for n in sorted(nodes):
if n in missing_only:
cls = "cand"
elif n in sources and n not in targets:
cls = "base"
else:
cls = "derived"
nodelist.append({"id": n, "cls": cls, "sz": 1 + 2*(deg[n]/max_deg)})
graph = {"nodes": nodelist, "links": links}
return graph
def generate_html(graph: dict) -> str:
"""Return the full HTML string with inlined CSS/JS + graph JSON."""
js = JS.replace("__GRAPH_DATA__", json.dumps(graph, separators=(",", ":")))
return HTML.replace("__CSS__", CSS).replace("__JS__", js)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3) HTML (D3.js) boilerplate β CSS + JS templates (unchanged design)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
CSS = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
:root { --base: 60px; }
body { margin:0; font-family:'Inter',Arial,sans-serif; background:transparent; overflow:hidden; }
svg { width:100vw; height:100vh; }
.link { stroke:#999; stroke-opacity:.6; }
.link.cand { stroke:#e63946; stroke-width:2.5; }
.node-label { fill:#333; pointer-events:none; text-anchor:middle; font-weight:600; }
.link-label { fill:#555; font-size:10px; pointer-events:none; text-anchor:middle; }
.node.base path { fill:#ffbe0b; }
.node.derived circle { fill:#1f77b4; }
.node.cand circle, .node.cand path { fill:#e63946; }
#legend { position:fixed; top:18px; left:18px; background:rgba(255,255,255,.92); padding:18px 28px;
border-radius:10px; border:1.5px solid #bbb; font-size:18px; box-shadow:0 2px 8px rgba(0,0,0,.08); }
"""
JS = """
function updateVisibility() {
const show = document.getElementById('toggleRed').checked;
svg.selectAll('.link.cand').style('display', show ? null : 'none');
svg.selectAll('.node.cand').style('display', show ? null : 'none');
svg.selectAll('.link-label')
.filter(d => d.cand)
.style('display', show ? null : 'none');
}
document.getElementById('toggleRed').addEventListener('change', updateVisibility);
const graph = __GRAPH_DATA__;
const W = innerWidth, H = innerHeight;
const svg = d3.select('#dependency').call(d3.zoom().on('zoom', e => g.attr('transform', e.transform)));
const g = svg.append('g');
const link = g.selectAll('line')
.data(graph.links)
.join('line')
.attr('class', d => d.cand ? 'link cand' : 'link');
const linkLbl = g.selectAll('text.link-label')
.data(graph.links)
.join('text')
.attr('class', 'link-label')
.text(d => d.label);
const node = g.selectAll('g.node')
.data(graph.nodes)
.join('g')
.attr('class', d => `node ${d.cls}`)
.call(d3.drag().on('start', dragStart).on('drag', dragged).on('end', dragEnd));
node.filter(d => d.cls==='base').append('image')
.attr('xlink:href', 'hf-logo.svg').attr('x', -30).attr('y', -30).attr('width', 60).attr('height', 60);
node.filter(d => d.cls!=='base').append('circle').attr('r', d => 20*d.sz);
node.append('text').attr('class','node-label').attr('dy','-2.4em').text(d => d.id);
const sim = d3.forceSimulation(graph.nodes)
.force('link', d3.forceLink(graph.links).id(d => d.id).distance(520)) // tighter links
.force('charge', d3.forceManyBody().strength(-600)) // weaker repulsion
.force('center', d3.forceCenter(W / 2, H / 2))
.force('collide', d3.forceCollide(d => d.cls === 'base' ? 50 : 50)); // smaller bubble spacing
sim.on('tick', () => {
link.attr('x1', d=>d.source.x).attr('y1', d=>d.source.y)
.attr('x2', d=>d.target.x).attr('y2', d=>d.target.y);
linkLbl.attr('x', d=> (d.source.x+d.target.x)/2)
.attr('y', d=> (d.source.y+d.target.y)/2);
node.attr('transform', d=>`translate(${d.x},${d.y})`);
});
function dragStart(e,d){ if(!e.active) sim.alphaTarget(.3).restart(); d.fx=d.x; d.fy=d.y; }
function dragged(e,d){ d.fx=e.x; d.fy=e.y; }
function dragEnd(e,d){ if(!e.active) sim.alphaTarget(0); d.fx=d.fy=null; }
"""
HTML = """
<!DOCTYPE html>
<html lang='en'><head><meta charset='UTF-8'>
<title>Transformers modular graph</title>
<style>__CSS__</style></head><body>
<div id='legend'>
π‘ base<br>π΅ modular<br>π΄ candidate<br>red edgeΒ = high embedding similarity<br><br>
<label><input type="checkbox" id="toggleRed" checked> Show candidates edges and nodes</label>
</div>
<svg id='dependency'></svg>
<script src='https://d3js.org/d3.v7.min.js'></script>
<script>__JS__</script></body></html>
"""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# HTML writer
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def write_html(graph_data: dict, path: Path):
path.write_text(generate_html(graph_data), encoding="utf-8")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# MAIN
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
ap = argparse.ArgumentParser(description="Visualise modular dependencies + candidates")
ap.add_argument("transformers", help="Path to local π€ transformers repo root")
ap.add_argument("--multimodal", action="store_true", help="filter to models with β₯3 'pixel_values'")
ap.add_argument("--sim-threshold", type=float, default=SIM_DEFAULT)
ap.add_argument("--out", default=HTML_DEFAULT)
ap.add_argument("--sim-method", choices=["jaccard", "embedding"], default="jaccard",
help="Similarity method: 'jaccard' or 'embedding'")
args = ap.parse_args()
graph = build_graph_json(
transformers_dir=Path(args.transformers).expanduser().resolve(),
threshold=args.sim_threshold,
multimodal=args.multimodal,
sim_method=args.sim_method,
)
write_html(graph, Path(args.out).expanduser())
if __name__ == "__main__":
main()
|