Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,751 Bytes
53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 214d223 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 53c0cc8 c410e03 ceffe7d 53c0cc8 13231fe 53c0cc8 df95764 53c0cc8 3e9c92c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# app.py β Gradio Space wrapper for modular_graph_and_candidates
from __future__ import annotations
import json
import shutil
import subprocess
import tempfile
from datetime import datetime, timedelta
from functools import lru_cache
from pathlib import Path
import gradio as gr
# ββ refactored helpers ββ
from modular_graph_and_candidates import build_graph_json, generate_html
HF_MAIN_REPO = "https://github.com/huggingface/transformers"
# βββββββββββββββββββββββββββββ cache repo once per 24β―h βββββββββββββββββββββββββββ
@lru_cache(maxsize=4)
def clone_or_cache(repo_url: str) -> Path:
"""Shallowβclone *repo_url* and reuse it for 24β―h."""
tmp_root = Path(tempfile.gettempdir())
cache_dir = tmp_root / f"repo_{abs(hash(repo_url))}"
stamp = cache_dir / ".cloned_at"
if cache_dir.exists() and stamp.exists():
try:
if datetime.utcnow() - datetime.fromisoformat(stamp.read_text().strip()) < timedelta(days=1):
return cache_dir
except Exception:
pass # fall through β reclone
shutil.rmtree(cache_dir, ignore_errors=True)
subprocess.check_call(["git", "clone", "--depth", "1", repo_url, str(cache_dir)])
stamp.write_text(datetime.utcnow().isoformat())
return cache_dir
# βββββββββββββββββββββββββββββ main callback βββββββββββββββββββββββββββββββββββββ
def _escape_srcdoc(text: str) -> str:
"""Escape for inclusion inside an <iframe srcdoc="β¦"> attribute."""
return (
text.replace("&", "&")
.replace("\"", """)
.replace("'", "'")
.replace("<", "<")
.replace(">", ">")
)
def run(repo_url: str, threshold: float, multimodal: bool, sim_method: str):
# Always download repo for now - let build_graph_json decide if it needs it
repo_path = clone_or_cache(repo_url)
graph = build_graph_json(
transformers_dir=repo_path,
threshold=threshold,
multimodal=multimodal,
sim_method=sim_method,
)
raw_html = generate_html(graph)
iframe_html = (
f'<iframe style="width:100%;height:85vh;border:none;" '
f'srcdoc="{_escape_srcdoc(raw_html)}"></iframe>'
)
tmp_json = Path(tempfile.mktemp(suffix=".json"))
tmp_json.write_text(json.dumps(graph), encoding="utf-8")
return iframe_html, str(tmp_json)
# βββββββββββββββββββββββββββββ UI ββββββββββββββββββββββββββββββββββββββββββββββββ
CUSTOM_CSS = """
#graph_html iframe {height:85vh !important; width:100% !important; border:none;}
"""
with gr.Blocks(css=CUSTOM_CSS) as demo:
gr.Markdown("## π Modularβcandidate explorer for π€ Transformers")
with gr.Row():
repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity β₯")
multi_cb = gr.Checkbox(label="Only multimodal models")
sim_radio = gr.Radio(["jaccard", "embedding"], value="jaccard", label="Similarity metric")
go_btn = gr.Button("Build graph")
html_out = gr.HTML(elem_id="graph_html", show_label=False)
json_out = gr.File(label="Download graph.json")
go_btn.click(run, [repo_in, thresh, multi_cb, sim_radio], [html_out, json_out])
if __name__ == "__main__":
demo.launch(allowed_paths=["static"]) |