Spaces:
Running
Running
File size: 19,668 Bytes
20dcaab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from io import BytesIO
def load_vision_model(model_name="flaviagiammarino/medsam-vit-base"):
"""
Load MedSAM model from Hugging Face
Args:
model_name (str): Model repository name
Returns:
tuple: (model, processor)
"""
from transformers import SamModel, SamProcessor
try:
# Try loading the model
model = SamModel.from_pretrained(model_name)
processor = SamProcessor.from_pretrained(model_name)
# Move to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
return model, processor
except Exception as e:
raise RuntimeError(f"Failed to load vision model {model_name}: {e}")
def identify_image_type(image):
"""Identify the type of medical image based on visual characteristics"""
# Convert to numpy array if it's a PIL image
if isinstance(image, Image.Image):
img_array = np.array(image)
else:
img_array = image
# Get image dimensions and ratio
height, width = img_array.shape[:2]
aspect_ratio = width / height
# Basic image type detection logic
if aspect_ratio > 1.4: # Wide format
# Likely a panoramic X-ray or abdominal scan
return "Panoramic X-ray"
elif aspect_ratio < 0.7: # Tall format
# Likely a full spine X-ray
return "Full Spine X-ray"
else: # Square-ish format
# Check brightness distribution for chest vs other X-rays
# Chest X-rays typically have more contrast between dark (lungs) and bright (bones) areas
# If grayscale, use directly, otherwise convert
if len(img_array.shape) > 2: # Color image
gray_img = np.mean(img_array, axis=2)
else:
gray_img = img_array
# Normalize to 0-1
if gray_img.max() > 0:
gray_img = gray_img / gray_img.max()
# Check if has clear lung fields (darker regions in center)
center_region = gray_img[height//4:3*height//4, width//4:3*width//4]
edges_region = gray_img.copy()
edges_region[height//4:3*height//4, width//4:3*width//4] = 1 # Mask out center
center_mean = np.mean(center_region)
edges_mean = np.mean(edges_region)
# Chest X-rays typically have darker center (lung fields)
if center_mean < edges_mean * 0.85:
return "Chest X-ray"
else:
# Look for bone structures
high_intensity = np.percentile(gray_img, 95) * 0.95
bone_pixels = np.sum(gray_img > high_intensity) / (height * width)
if bone_pixels > 0.15: # Significant bone content
if height > width:
return "Spine X-ray"
else:
return "Extremity X-ray"
# Default
return "Medical X-ray"
def detect_abnormalities(image_type, mask, image_array):
"""Detect potential abnormalities based on image type and mask area"""
# Create more meaningful default findings
findings = {
"regions_of_interest": ["No specific abnormalities detected"],
"potential_findings": ["Normal study"],
"additional_notes": []
}
# Get mask properties
if len(mask.shape) > 2:
mask = mask[:,:,0] # Take first channel if multi-channel
# Extract masked region stats
if np.any(mask):
rows, cols = np.where(mask)
min_row, max_row = min(rows), max(rows)
min_col, max_col = min(cols), max(cols)
# Get region location
height, width = mask.shape
region_center_y = np.mean(rows)
region_center_x = np.mean(cols)
rel_y = region_center_y / height
rel_x = region_center_x / width
# Get image intensity stats in masked region
if len(image_array.shape) > 2:
gray_img = np.mean(image_array, axis=2)
else:
gray_img = image_array
if gray_img.max() > 0:
gray_img = gray_img / gray_img.max()
# Get statistics of the region
mask_intensities = gray_img[mask]
if len(mask_intensities) > 0:
region_mean = np.mean(mask_intensities)
region_std = np.std(mask_intensities)
# Calculate stats outside the mask for comparison
inverse_mask = ~mask
outside_intensities = gray_img[inverse_mask]
if len(outside_intensities) > 0:
outside_mean = np.mean(outside_intensities)
intensity_diff = abs(region_mean - outside_mean)
else:
outside_mean = 0
intensity_diff = 0
# Identify regions of interest based on image type
if image_type == "Chest X-ray":
findings["regions_of_interest"] = []
# Identify anatomical regions in chest X-ray
if rel_y < 0.3: # Upper chest
if rel_x < 0.4:
findings["regions_of_interest"].append("Left upper lung field")
elif rel_x > 0.6:
findings["regions_of_interest"].append("Right upper lung field")
else:
findings["regions_of_interest"].append("Upper mediastinum")
elif rel_y < 0.6: # Mid chest
if rel_x < 0.4:
findings["regions_of_interest"].append("Left mid lung field")
elif rel_x > 0.6:
findings["regions_of_interest"].append("Right mid lung field")
else:
findings["regions_of_interest"].append("Central mediastinum")
findings["regions_of_interest"].append("Cardiac silhouette")
else: # Lower chest
if rel_x < 0.4:
findings["regions_of_interest"].append("Left lower lung field")
findings["regions_of_interest"].append("Left costophrenic angle")
elif rel_x > 0.6:
findings["regions_of_interest"].append("Right lower lung field")
findings["regions_of_interest"].append("Right costophrenic angle")
else:
findings["regions_of_interest"].append("Lower mediastinum")
findings["regions_of_interest"].append("Upper abdomen")
# Check for potential abnormalities based on intensity
findings["potential_findings"] = []
if region_mean < outside_mean * 0.7 and region_std < 0.15:
findings["potential_findings"].append("Potential hyperlucency/emphysematous changes")
elif region_mean > outside_mean * 1.3:
if region_std > 0.2:
findings["potential_findings"].append("Heterogeneous opacity")
else:
findings["potential_findings"].append("Homogeneous opacity/consolidation")
# Add size of area
mask_height = max_row - min_row
mask_width = max_col - min_col
if max(mask_height, mask_width) > min(height, width) * 0.25:
findings["additional_notes"].append(f"Large area of interest ({mask_height}x{mask_width} pixels)")
else:
findings["additional_notes"].append(f"Focal area of interest ({mask_height}x{mask_width} pixels)")
elif "Spine" in image_type:
# Vertebral analysis for spine X-rays
findings["regions_of_interest"] = []
if rel_y < 0.3:
findings["regions_of_interest"].append("Cervical spine region")
elif rel_y < 0.6:
findings["regions_of_interest"].append("Thoracic spine region")
else:
findings["regions_of_interest"].append("Lumbar spine region")
# Check for potential findings
findings["potential_findings"] = []
if region_std > 0.25: # High variability in vertebral region could indicate irregularity
findings["potential_findings"].append("Potential vertebral irregularity")
if intensity_diff > 0.3:
findings["potential_findings"].append("Area of abnormal density")
elif "Extremity" in image_type:
# Extremity X-ray analysis
findings["regions_of_interest"] = []
# Basic positioning
if rel_y < 0.5 and rel_x < 0.5:
findings["regions_of_interest"].append("Proximal joint region")
elif rel_y > 0.5 and rel_x > 0.5:
findings["regions_of_interest"].append("Distal joint region")
else:
findings["regions_of_interest"].append("Mid-shaft bone region")
# Check for potential findings
findings["potential_findings"] = []
if region_std > 0.25: # High variability could indicate irregular bone contour
findings["potential_findings"].append("Potential cortical irregularity")
if intensity_diff > 0.4:
findings["potential_findings"].append("Area of abnormal bone density")
# Default if no findings identified
if len(findings["potential_findings"]) == 0:
findings["potential_findings"] = ["No obvious abnormalities in segmented region"]
return findings
def analyze_medical_image(image_type, image, mask, metadata):
"""Generate a comprehensive medical image analysis"""
# Convert to numpy if PIL image
if isinstance(image, Image.Image):
image_array = np.array(image)
else:
image_array = image
# Detect abnormalities based on image type and region
abnormalities = detect_abnormalities(image_type, mask, image_array)
# Get mask properties
mask_area = metadata["mask_percentage"]
confidence = metadata["score"]
# Determine anatomical positioning
height, width = mask.shape if len(mask.shape) == 2 else mask.shape[:2]
if np.any(mask):
rows, cols = np.where(mask)
center_y = np.mean(rows) / height
center_x = np.mean(cols) / width
# Determine laterality
if center_x < 0.4:
laterality = "Left side predominant"
elif center_x > 0.6:
laterality = "Right side predominant"
else:
laterality = "Midline/central"
# Determine superior/inferior position
if center_y < 0.4:
position = "Superior/upper region"
elif center_y > 0.6:
position = "Inferior/lower region"
else:
position = "Mid/central region"
else:
laterality = "Undetermined"
position = "Undetermined"
# Generate analysis text
if image_type == "Chest X-ray":
image_description = "anteroposterior (AP) or posteroanterior (PA) chest radiograph"
regions = ", ".join(abnormalities["regions_of_interest"])
findings = ", ".join(abnormalities["potential_findings"])
elif "Spine" in image_type:
image_description = "spinal radiograph"
regions = ", ".join(abnormalities["regions_of_interest"])
findings = ", ".join(abnormalities["potential_findings"])
elif "Extremity" in image_type:
image_description = "extremity radiograph"
regions = ", ".join(abnormalities["regions_of_interest"])
findings = ", ".join(abnormalities["potential_findings"])
else:
image_description = "medical radiograph"
regions = ", ".join(abnormalities["regions_of_interest"])
findings = ", ".join(abnormalities["potential_findings"])
# Finalize analysis text
analysis_text = f"""
## Radiological Analysis
**Image Type**: {image_type}
**Segmentation Details**:
- Region: {position} ({regions})
- Laterality: {laterality}
- Coverage: {mask_area:.1f}% of the image
**Findings**:
- {findings}
- {'; '.join(abnormalities["additional_notes"]) if abnormalities["additional_notes"] else 'No additional notes'}
**Technical Assessment**:
- Segmentation confidence: {confidence:.2f} (on a 0-1 scale)
- Image quality: {'Adequate' if confidence > 0.4 else 'Suboptimal'} for assessment
**Impression**:
This {image_description} demonstrates a highlighted area in the {position.lower()} with {laterality.lower()}.
{findings.capitalize() if findings else 'No significant abnormalities identified in the segmented region.'} Additional clinical correlation is recommended.
*Note: This is an automated analysis and should be reviewed by a qualified healthcare professional.*
"""
# Create analysis results as dict
analysis_results = {
"image_type": image_type,
"region": position,
"laterality": laterality,
"regions_of_interest": abnormalities["regions_of_interest"],
"potential_findings": abnormalities["potential_findings"],
"additional_notes": abnormalities["additional_notes"],
"coverage_percentage": mask_area,
"confidence_score": confidence
}
return analysis_text, analysis_results
def process_medical_image(image, model=None, processor=None):
"""
Process medical image with MedSAM using automatic segmentation
Args:
image (PIL.Image): Input image
model: SamModel instance (optional, will be loaded if not provided)
processor: SamProcessor instance (optional, will be loaded if not provided)
Returns:
tuple: (PIL.Image of segmentation, metadata dict, analysis text)
"""
# Load model and processor if not provided
if model is None or processor is None:
from transformers import SamModel, SamProcessor
model_name = "flaviagiammarino/medsam-vit-base"
model, processor = load_vision_model(model_name)
# Convert image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Convert to grayscale if it's not already
if image.mode != 'L':
grayscale = image.convert('L')
# Convert back to RGB for processing
image_for_processing = grayscale.convert('RGB')
else:
# If already grayscale, convert to RGB for processing
image_for_processing = image.convert('RGB')
# Resize image to a standard size (FIX: make sure we use consistent dimensions)
image_size = 512 # Use power of 2 for better compatibility
processed_image = image_for_processing.resize((image_size, image_size), Image.LANCZOS)
image_array = np.array(processed_image)
# Identify the type of medical image
image_type = identify_image_type(image)
try:
# For chest X-rays, target the full central region
# This ensures we analyze most of the image rather than just a tiny portion
height, width = image_array.shape[:2]
# FIX: Ensure input_boxes are in the correct format: [[x1, y1, x2, y2]] (not [x1, y1, x2, y2])
# Create a large box covering ~75% of the image
margin = width // 8 # 12.5% margin on each side
# Correct box format: list of lists where each inner list is [x1, y1, x2, y2]
box = [[margin, margin, width - margin, height - margin]]
# Process with the larger box
inputs = processor(
images=processed_image, # FIX: Use PIL image instead of numpy array
input_boxes=[box], # FIX: Ensure correct nesting
return_tensors="pt"
)
# Transfer inputs to the same device as the model
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()}
# Run inference
with torch.no_grad():
outputs = model(**inputs)
# Process the masks - FIX: Make sure we use the correct dimensions
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.squeeze(1),
inputs["original_sizes"],
inputs["reshaped_input_sizes"]
)
# Get scores
scores = outputs.iou_scores
best_idx = torch.argmax(scores)
score_value = float(scores[0][best_idx].cpu().numpy())
# Get the best mask
mask = masks[0][best_idx].cpu().numpy() > 0
except Exception as e:
print(f"Error in MedSAM processing: {e}")
# Create a fallback mask covering most of the central image area
mask = np.zeros((image_size, image_size), dtype=bool)
margin = image_size // 8
mask[margin:image_size-margin, margin:image_size-margin] = True
score_value = 0.5
# Visualize results
fig, ax = plt.subplots(figsize=(12, 12))
# Use the grayscale image for visualization if it was an X-ray
ax.imshow(image_array, cmap='gray' if image.mode == 'L' else None)
# Show mask as overlay with improved visibility
color_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.float32)
color_mask[mask] = [1, 0, 0, 0.4] # Semi-transparent red
ax.imshow(color_mask)
# Add title with image type
ax.set_title(f"Medical Image Segmentation: {image_type}", fontsize=14)
ax.axis('off')
# Convert plot to image
fig.patch.set_facecolor('white')
buf = BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.1,
facecolor='white', dpi=150)
plt.close(fig)
buf.seek(0)
result_image = Image.open(buf)
# Prepare metadata
metadata = {
"mask_percentage": float(np.mean(mask) * 100), # Percentage of image that is masked
"score": score_value,
"size": {
"width": mask.shape[1],
"height": mask.shape[0]
}
}
# Generate analysis
analysis_text, analysis_results = analyze_medical_image(image_type, processed_image, mask, metadata)
# FIX: Return the result_image directly, not as part of a tuple with metadata and analysis
return result_image, metadata, analysis_text |