Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,410 Bytes
11b119e da5e325 1889706 11b119e 1889706 11b119e c499701 1889706 4cf6a1b d47233e da5e325 81535ba 11b119e 81535ba 1889706 81535ba e88bb31 81535ba 1889706 e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba e88bb31 81535ba a252b0c 81535ba a252b0c 81535ba e88bb31 81535ba e88bb31 81535ba 1889706 81535ba e88bb31 81535ba e88bb31 1889706 e88bb31 c499701 11b119e d560a5c d47233e 4cf6a1b d47233e 11b119e 1889706 d560a5c 11b119e 20b2f53 5269c48 e88bb31 1889706 d560a5c e88bb31 d560a5c 1889706 e88bb31 1889706 d560a5c 1889706 11b119e a252b0c c499701 11b119e c499701 11b119e c499701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import shutil
import subprocess
import time
from pathlib import Path
from typing import Tuple
import gradio as gr
import lightning as L
import spaces
import torch
import yaml
from box import Box
# Get the PyTorch and CUDA versions
torch_version = torch.__version__.split("+")[0] # Strips any "+cuXXX" suffix
cuda_version = torch.version.cuda
spconv_version = "-cu121" if cuda_version else ""
# Format CUDA version to match the URL convention (e.g., "cu118" for CUDA 11.8)
if cuda_version:
cuda_version = f"cu{cuda_version.replace('.', '')}"
else:
cuda_version = "cpu" # Fallback in case CUDA is not available
subprocess.run(f'pip install spconv{spconv_version}', shell=True)
subprocess.run(f'pip install torch_scatter torch_cluster -f https://data.pyg.org/whl/torch-{torch_version}+{cuda_version}.html --no-cache-dir', shell=True)
# Helper functions
def validate_input_file(file_path: str) -> bool:
"""Validate if the input file format is supported."""
supported_formats = ['.obj', '.fbx', '.glb']
if not file_path or not Path(file_path).exists():
return False
file_ext = Path(file_path).suffix.lower()
return file_ext in supported_formats
def extract_mesh_python(input_file: str, output_dir: str) -> str:
"""
Extract mesh data from 3D model using Python (replaces extract.sh)
Returns path to generated .npz file
"""
# Import required modules
from src.data.extract import extract_builtin, get_files
# Create extraction parameters
files = get_files(
data_name="raw_data.npz",
inputs=str(input_file),
input_dataset_dir=None,
output_dataset_dir=output_dir,
force_override=True,
warning=False,
)
if not files:
raise RuntimeError("No files to extract")
# Run the actual extraction
timestamp = str(int(time.time()))
extract_builtin(
output_folder=output_dir,
target_count=50000,
num_runs=1,
id=0,
time=timestamp,
files=files,
)
# Return the directory path where raw_data.npz was created
# The dataset expects to find raw_data.npz in this directory
expected_npz_dir = files[0][1] # This is the output directory
expected_npz_file = Path(expected_npz_dir) / "raw_data.npz"
if not expected_npz_file.exists():
raise RuntimeError(f"Extraction failed: {expected_npz_file} not found")
return expected_npz_dir # Return the directory containing raw_data.npz
def run_inference_python(
input_file: str,
output_file: str,
inference_type: str,
seed: int = 12345,
npz_dir: str = None
) -> str:
"""
Unified inference function for both skeleton and skin inference.
Args:
input_file: Path to input file (3D model for skeleton, skeleton FBX for skin)
output_file: Path to output file
inference_type: Either "skeleton" or "skin"
seed: Random seed for reproducible results
npz_dir: Directory for NPZ files (used for skeleton inference)
Returns:
Path to generated file
"""
from src.data.datapath import Datapath
from src.data.dataset import DatasetConfig, UniRigDatasetModule
from src.data.transform import TransformConfig
from src.inference.download import download
from src.model.parse import get_model
from src.system.parse import get_system, get_writer
from src.tokenizer.parse import get_tokenizer
from src.tokenizer.spec import TokenizerConfig
# Set random seed for skeleton inference
if inference_type == "skeleton":
L.seed_everything(seed, workers=True)
# Load task and model configurations based on inference type
if inference_type == "skeleton":
task_config_path = "configs/task/quick_inference_skeleton_articulationxl_ar_256.yaml"
transform_config_path = "configs/transform/inference_ar_transform.yaml"
model_config_path = "configs/model/unirig_ar_350m_1024_81920_float32.yaml"
system_config_path = "configs/system/ar_inference_articulationxl.yaml"
tokenizer_config_path = "configs/tokenizer/tokenizer_parts_articulationxl_256.yaml"
data_name = "raw_data.npz"
else: # skin
task_config_path = "configs/task/quick_inference_unirig_skin.yaml"
transform_config_path = "configs/transform/inference_skin_transform.yaml"
model_config_path = "configs/model/unirig_skin.yaml"
system_config_path = "configs/system/skin.yaml"
tokenizer_config_path = None
data_name = "predict_skeleton.npz"
# Load task configuration
if not Path(task_config_path).exists():
raise FileNotFoundError(f"Task configuration file not found: {task_config_path}")
with open(task_config_path, 'r') as f:
task = Box(yaml.safe_load(f))
# Setup data directory and datapath
if inference_type == "skeleton":
# Create temporary npz directory and extract mesh data
if npz_dir is None:
npz_dir = Path(output_file).parent / "npz"
npz_dir = Path(npz_dir)
npz_dir.mkdir(exist_ok=True)
npz_data_dir = extract_mesh_python(input_file, npz_dir)
datapath = Datapath(files=[npz_data_dir], cls=None)
else: # skin
# Look for NPZ files from previous skeleton inference
skeleton_work_dir = Path(input_file).parent
all_npz_files = list(skeleton_work_dir.rglob("**/*.npz"))
if not all_npz_files:
raise RuntimeError(f"No NPZ files found for skin inference in {skeleton_work_dir}")
skeleton_npz_dir = all_npz_files[0].parent
datapath = Datapath(files=[str(skeleton_npz_dir)], cls=None)
# Load common configurations
data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
transform_config = Box(yaml.safe_load(open(transform_config_path, 'r')))
# Setup tokenizer and model
if inference_type == "skeleton":
tokenizer_config = TokenizerConfig.parse(config=Box(yaml.safe_load(open(tokenizer_config_path, 'r'))))
tokenizer = get_tokenizer(config=tokenizer_config)
model_config = Box(yaml.safe_load(open(model_config_path, 'r')))
model = get_model(tokenizer=tokenizer, **model_config)
else: # skin
tokenizer_config = None
tokenizer = None
model_config = Box(yaml.safe_load(open(model_config_path, 'r')))
model = get_model(tokenizer=None, **model_config)
# Setup datasets and transforms
predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
# Create data module
data = UniRigDatasetModule(
process_fn=model._process_fn,
predict_dataset_config=predict_dataset_config,
predict_transform_config=predict_transform_config,
tokenizer_config=tokenizer_config,
debug=False,
data_name=data_name,
datapath=datapath,
cls=None,
)
# Setup callbacks and writer
callbacks = []
writer_config = task.writer.copy()
if inference_type == "skeleton":
writer_config['npz_dir'] = str(npz_dir)
writer_config['output_dir'] = str(Path(output_file).parent)
writer_config['output_name'] = Path(output_file).name
writer_config['user_mode'] = False # Enable NPZ export for skeleton
else: # skin
writer_config['npz_dir'] = str(skeleton_npz_dir)
writer_config['output_name'] = str(output_file)
writer_config['user_mode'] = True
writer_config['export_fbx'] = True
print(f"Writer config for {inference_type}: {writer_config}")
callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
# Get system
system_config = Box(yaml.safe_load(open(system_config_path, 'r')))
system = get_system(**system_config, model=model, steps_per_epoch=1)
# Setup trainer
trainer_config = task.trainer
resume_from_checkpoint = download(task.resume_from_checkpoint)
trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
# Run prediction
trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
# Handle output file location and validation
if inference_type == "skeleton":
# Look for the generated skeleton.fbx file
input_name_stem = Path(input_file).stem
actual_output_dir = Path(output_file).parent / input_name_stem
actual_output_file = actual_output_dir / "skeleton.fbx"
if not actual_output_file.exists():
# Try alternative locations
alt_files = list(Path(output_file).parent.rglob("skeleton.fbx"))
if alt_files:
actual_output_file = alt_files[0]
print(f"Found skeleton at alternative location: {actual_output_file}")
else:
all_files = list(Path(output_file).parent.rglob("*"))
print(f"Available files: {[str(f) for f in all_files]}")
raise RuntimeError(f"Skeleton FBX file not found. Expected at: {actual_output_file}")
# Copy to the expected output location
if actual_output_file != Path(output_file):
shutil.copy2(actual_output_file, output_file)
print(f"Copied skeleton from {actual_output_file} to {output_file}")
else: # skin
# Check if skin FBX file was generated
if not Path(output_file).exists():
# Look for generated skin FBX files
skin_files = list(Path(output_file).parent.rglob("*skin*.fbx"))
if skin_files:
actual_output_file = skin_files[0]
shutil.copy2(actual_output_file, output_file)
else:
raise RuntimeError(f"Skin FBX file not found. Expected at: {output_file}")
print(f"Generated {inference_type} at: {output_file}")
return str(output_file)
def merge_results_python(source_file: str, target_file: str, output_file: str) -> str:
"""
Merge results using Python (replaces merge.sh)
Returns path to merged file
"""
from src.inference.merge import transfer
# Validate input paths
if not Path(source_file).exists():
raise ValueError(f"Source file does not exist: {source_file}")
if not Path(target_file).exists():
raise ValueError(f"Target file does not exist: {target_file}")
# Ensure output directory exists
output_path = Path(output_file)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Use the transfer function directly
transfer(source=str(source_file), target=str(target_file), output=str(output_path), add_root=False)
# Validate that the output file was created and is a valid file
if not output_path.exists():
raise RuntimeError(f"Merge failed: Output file not created at {output_path}")
if not output_path.is_file():
raise RuntimeError(f"Merge failed: Output path is not a valid file: {output_path}")
return str(output_path.resolve())
@spaces.GPU()
def main(input_file: str, seed: int = 12345) -> Tuple[str, list]:
"""
Run the rigging pipeline based on selected mode.
Args:
input_file: Path to the input 3D model file
seed: Random seed for reproducible results
Returns:
Tuple of (final_file_path, list_of_intermediate_files)
"""
# Create temp directory
base_dir = Path(__file__).parent
temp_dir = base_dir / "tmp"
temp_dir.mkdir(exist_ok=True)
# Supported file formats
supported_formats = ['.obj', '.fbx', '.glb']
# Validate input file
if not validate_input_file(input_file):
raise gr.Error(f"Error: Invalid or unsupported file format. Supported formats: {', '.join(supported_formats)}")
# Create working directory
file_stem = Path(input_file).stem
input_model_dir = temp_dir / f"{file_stem}_{seed}"
input_model_dir.mkdir(exist_ok=True)
# Copy input file to working directory
input_file = Path(input_file)
shutil.copy2(input_file, input_model_dir / input_file.name)
input_file = input_model_dir / input_file.name
print(f"New input file path: {input_file}")
# Initialize file paths and output list
output_files = []
final_file = None
# Step 1: Generate skeleton
intermediate_skeleton_file = input_model_dir / f"{file_stem}_skeleton.fbx"
final_skeleton_file = input_model_dir / f"{file_stem}_skeleton_only{input_file.suffix}"
run_inference_python(input_file, intermediate_skeleton_file, "skeleton", seed)
merge_results_python(intermediate_skeleton_file, input_file, final_skeleton_file)
# Step 2: Generate skinning and Merge everything together
intermediate_skin_file = input_model_dir / f"{file_stem}_skin.fbx"
final_skin_file = input_model_dir / f"{file_stem}_skeleton_and_skinning{input_file.suffix}"
run_inference_python(intermediate_skeleton_file, intermediate_skin_file, "skin")
merge_results_python(intermediate_skin_file, input_file, final_skin_file)
final_file = str(final_skin_file)
output_files = [str(final_skeleton_file), str(final_skin_file)]
return final_file, output_files
def create_app():
"""Create and configure the Gradio interface."""
with gr.Blocks(title="UniRig - 3D Model Rigging Demo") as interface:
# Header
gr.HTML("""
<div class="title" style="text-align: center">
<h1>π― UniRig: Automated 3D Model Rigging</h1>
<p style="font-size: 1.1em; color: #6b7280;">
Leverage deep learning to automatically generate skeletons and skinning weights for your 3D models
</p>
</div>
""")
# Usage Instructions Section
gr.Markdown("""## Notes:
- If you are not seeing the 3D model preview and you are using chrome, go to `chrome://flags/#enable-unsafe-webgpu` and enable the flag.
- Supported File Formats are `.obj`, `.fbx`, `.glb`
- The process may take a few minutes depending on the model complexity and server load.
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_3d_model = gr.Model3D(label="Upload 3D Model")
with gr.Group():
with gr.Row(equal_height=True):
seed = gr.Number(
value=int(torch.randint(0, 100000, (1,)).item()),
label="Random Seed (for reproducible results)",
scale=4,
)
random_btn = gr.Button("π Random Seed", variant="secondary", scale=1)
pipeline_btn = gr.Button("π― Start Processing", variant="primary", size="lg")
with gr.Column():
pipeline_skeleton_out = gr.Model3D(label="Final Result", scale=4)
files_to_download = gr.Files(label="Download Files", scale=1)
random_btn.click(
fn=lambda: int(torch.randint(0, 100000, (1,)).item()),
outputs=seed
)
pipeline_btn.click(
fn=main,
inputs=[input_3d_model, seed],
outputs=[pipeline_skeleton_out, files_to_download]
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2em; padding: 1em; border-radius: 8px;">
<p style="color: #6b7280;">
π¬ <strong>UniRig</strong> - Research by Tsinghua University & Tripo<br>
π <a href="https://arxiv.org/abs/2504.12451" target="_blank">Paper</a> |
π <a href="https://zjp-shadow.github.io/works/UniRig/" target="_blank">Project Page</a> |
π€ <a href="https://huggingface.co/VAST-AI/UniRig" target="_blank">Models</a>
</p>
</div>
""")
return interface
if __name__ == "__main__":
# Create and launch the interface
app = create_app()
# Launch configuration
app.queue().launch()
|