MohamedRashad's picture
Add initial module structure and base classes for samplers and representations
73c350d
raw
history blame
8.82 kB
import torch
import numpy as np
from plyfile import PlyData, PlyElement
from .general_utils import inverse_sigmoid, strip_symmetric, build_scaling_rotation
class Gaussian:
def __init__(
self,
aabb : list,
sh_degree : int = 0,
mininum_kernel_size : float = 0.0,
scaling_bias : float = 0.01,
opacity_bias : float = 0.1,
scaling_activation : str = "exp",
device='cuda'
):
self.init_params = {
'aabb': aabb,
'sh_degree': sh_degree,
'mininum_kernel_size': mininum_kernel_size,
'scaling_bias': scaling_bias,
'opacity_bias': opacity_bias,
'scaling_activation': scaling_activation,
}
self.sh_degree = sh_degree
self.active_sh_degree = sh_degree
self.mininum_kernel_size = mininum_kernel_size
self.scaling_bias = scaling_bias
self.opacity_bias = opacity_bias
self.scaling_activation_type = scaling_activation
self.device = device
self.aabb = torch.tensor(aabb, dtype=torch.float32, device=device)
self.setup_functions()
self._xyz = None
self._features_dc = None
self._features_rest = None
self._scaling = None
self._rotation = None
self._opacity = None
def setup_functions(self):
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
symm = strip_symmetric(actual_covariance)
return symm
if self.scaling_activation_type == "exp":
self.scaling_activation = torch.exp
self.inverse_scaling_activation = torch.log
elif self.scaling_activation_type == "softplus":
self.scaling_activation = torch.nn.functional.softplus
self.inverse_scaling_activation = lambda x: x + torch.log(-torch.expm1(-x))
self.covariance_activation = build_covariance_from_scaling_rotation
self.opacity_activation = torch.sigmoid
self.inverse_opacity_activation = inverse_sigmoid
self.rotation_activation = torch.nn.functional.normalize
self.scale_bias = self.inverse_scaling_activation(torch.tensor(self.scaling_bias)).cuda()
self.rots_bias = torch.zeros((4)).cuda()
self.rots_bias[0] = 1
self.opacity_bias = self.inverse_opacity_activation(torch.tensor(self.opacity_bias)).cuda()
@property
def get_scaling(self):
scales = self.scaling_activation(self._scaling + self.scale_bias)
scales = torch.square(scales) + self.mininum_kernel_size ** 2
scales = torch.sqrt(scales)
return scales
@property
def get_rotation(self):
return self.rotation_activation(self._rotation + self.rots_bias[None, :])
@property
def get_xyz(self):
return self._xyz * self.aabb[None, 3:] + self.aabb[None, :3]
@property
def get_features(self):
return torch.cat((self._features_dc, self._features_rest), dim=2) if self._features_rest is not None else self._features_dc
@property
def get_opacity(self):
return self.opacity_activation(self._opacity + self.opacity_bias)
def get_covariance(self, scaling_modifier = 1):
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation + self.rots_bias[None, :])
def from_scaling(self, scales):
scales = torch.sqrt(torch.square(scales) - self.mininum_kernel_size ** 2)
self._scaling = self.inverse_scaling_activation(scales) - self.scale_bias
def from_rotation(self, rots):
self._rotation = rots - self.rots_bias[None, :]
def from_xyz(self, xyz):
self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
def from_features(self, features):
self._features_dc = features
def from_opacity(self, opacities):
self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias
def construct_list_of_attributes(self):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
l.append('opacity')
for i in range(self._scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(self._rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply(self, path):
xyz = self.get_xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = inverse_sigmoid(self.get_opacity).detach().cpu().numpy()
scale = torch.log(self.get_scaling).detach().cpu().numpy()
rotation = (self._rotation + self.rots_bias[None, :]).detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def load_ply(self, path):
plydata = PlyData.read(path)
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
np.asarray(plydata.elements[0]["y"]),
np.asarray(plydata.elements[0]["z"])), axis=1)
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
features_dc = np.zeros((xyz.shape[0], 3, 1))
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
if self.sh_degree > 0:
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
assert len(extra_f_names)==3*(self.sh_degree + 1) ** 2 - 3
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
for idx, attr_name in enumerate(extra_f_names):
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
scales = np.zeros((xyz.shape[0], len(scale_names)))
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
# convert to actual gaussian attributes
xyz = torch.tensor(xyz, dtype=torch.float, device=self.device)
features_dc = torch.tensor(features_dc, dtype=torch.float, device=self.device).transpose(1, 2).contiguous()
if self.sh_degree > 0:
features_extra = torch.tensor(features_extra, dtype=torch.float, device=self.device).transpose(1, 2).contiguous()
opacities = torch.sigmoid(torch.tensor(opacities, dtype=torch.float, device=self.device))
scales = torch.exp(torch.tensor(scales, dtype=torch.float, device=self.device))
rots = torch.tensor(rots, dtype=torch.float, device=self.device)
# convert to _hidden attributes
self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
self._features_dc = features_dc
if self.sh_degree > 0:
self._features_rest = features_extra
else:
self._features_rest = None
self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias
self._scaling = self.inverse_scaling_activation(torch.sqrt(torch.square(scales) - self.mininum_kernel_size ** 2)) - self.scale_bias
self._rotation = rots - self.rots_bias[None, :]