Moditha24 commited on
Commit
dc6947b
·
verified ·
1 Parent(s): c5fe13c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -10
app.py CHANGED
@@ -5,27 +5,22 @@ from tensorflow.keras.models import load_model
5
  import tensorflow as tf
6
  import pickle
7
 
8
- # Load the LabelEncoder from Hugging Face Space
9
  with open('label_encoder.pkl', 'rb') as f:
10
  label_encoder = pickle.load(f)
11
 
12
- # Assuming 'ct' is your ColumnTransformer (replace this with the actual loading code for your preprocessor)
13
- # If you have a preprocessor file (such as a pickle file), you can load it here, e.g.,
14
- # with open('column_transformer.pkl', 'rb') as f:
15
- # ct = pickle.load(f)
16
-
17
  # UI Components for user input
18
  input_Gender = gr.Radio(["male", "female"], label="Gender")
19
- input_Race = gr.Dropdown(list(dict(df['Race (Reported)'].value_counts()).keys()), label="Race")
20
- input_Age = gr.Dropdown(list(dict(df['Age'].value_counts())), label='Age')
21
  input_Height = gr.Number(label='Height (cm)')
22
  input_Weight = gr.Number(label='Weight (kg)')
23
  input_Diabetes = gr.Radio([0.0, 1.0], label='Diabetes')
24
  input_Simvastatin = gr.Radio([0.0, 1.0], label='Simvastatin (Zocor)')
25
  input_Amiodarone = gr.Radio([0.0, 1.0], label='Amiodarone (Cordarone)')
26
  input_INR_reported = gr.Number(label='INR on Reported Therapeutic Dose of Warfarin')
27
- input_Cyp2C9_genotypes = gr.Dropdown(list(dict(df['Cyp2C9 genotypes'].value_counts())), label='Cyp2C9 genotypes')
28
- input_VKORC1_genotypes = gr.Radio(list(dict(df['VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T'].value_counts())), label='VKORC1 genotypes')
29
  input_model = gr.Dropdown(['Decision Tree Regression', 'Support Vector Regression', 'Random Forest Regression', 'Deep Learning'], label='Model Selection')
30
 
31
  # Output textbox to display predicted dose
 
5
  import tensorflow as tf
6
  import pickle
7
 
8
+ # Load the LabelEncoder and ColumnTransformer before prediction
9
  with open('label_encoder.pkl', 'rb') as f:
10
  label_encoder = pickle.load(f)
11
 
 
 
 
 
 
12
  # UI Components for user input
13
  input_Gender = gr.Radio(["male", "female"], label="Gender")
14
+ input_Race = gr.Dropdown([], label="Race") # Use empty list as placeholder
15
+ input_Age = gr.Dropdown([], label='Age') # Use empty list as placeholder
16
  input_Height = gr.Number(label='Height (cm)')
17
  input_Weight = gr.Number(label='Weight (kg)')
18
  input_Diabetes = gr.Radio([0.0, 1.0], label='Diabetes')
19
  input_Simvastatin = gr.Radio([0.0, 1.0], label='Simvastatin (Zocor)')
20
  input_Amiodarone = gr.Radio([0.0, 1.0], label='Amiodarone (Cordarone)')
21
  input_INR_reported = gr.Number(label='INR on Reported Therapeutic Dose of Warfarin')
22
+ input_Cyp2C9_genotypes = gr.Dropdown([], label='Cyp2C9 genotypes') # Use empty list as placeholder
23
+ input_VKORC1_genotypes = gr.Radio([], label='VKORC1 genotypes') # Use empty list as placeholder
24
  input_model = gr.Dropdown(['Decision Tree Regression', 'Support Vector Regression', 'Random Forest Regression', 'Deep Learning'], label='Model Selection')
25
 
26
  # Output textbox to display predicted dose