Moditha24 commited on
Commit
9a7f2ca
·
verified ·
1 Parent(s): 07d43dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -14,10 +14,17 @@ df = pd.read_csv('processed_data.csv') # Replace with the correct path to your
14
  with open('label_encoder.pkl', 'rb') as f:
15
  label_encoder = pickle.load(f)
16
 
 
 
17
  ct = ColumnTransformer(
18
- transformers=[('encoder', OneHotEncoder(sparse_output=False, drop="first"),[0, 1, 9, 10])],
19
  remainder="passthrough"
20
  )
 
 
 
 
 
21
  # Assuming 'ct' is your ColumnTransformer (replace this with the actual loading code for your preprocessor)
22
  # Make sure that 'ct' is properly loaded, or use the same transformation logic here.
23
 
 
14
  with open('label_encoder.pkl', 'rb') as f:
15
  label_encoder = pickle.load(f)
16
 
17
+ categorical_features = [0, 1, 9, 10] # Update if column positions change
18
+
19
  ct = ColumnTransformer(
20
+ transformers=[('encoder', OneHotEncoder(sparse_output=False, drop="first"), categorical_features)],
21
  remainder="passthrough"
22
  )
23
+
24
+ # Fit it using your training data
25
+ ct.fit(df[['Gender', 'Race (Reported)', 'Cyp2C9 genotypes', 'VKORC1 genotype: -1639 G>A (3673); chr16:31015190; rs9923231; C/T']])
26
+
27
+
28
  # Assuming 'ct' is your ColumnTransformer (replace this with the actual loading code for your preprocessor)
29
  # Make sure that 'ct' is properly loaded, or use the same transformation logic here.
30