from abc import ABC, abstractmethod import time from pathlib import Path from pycoral.utils import edgetpu import numpy as np # Abstract interface for developers: class Detector(ABC): def __init__(self, threshold=None): """ If implementing __init__() in your subclass, it must take threshold as a keyword argument. This is the value of the threshold that the user can set in the Portiloop GUI. Caution: even if you don't need this manual threshold in your application, your implementation of __init__() still needs to have this keyword argument. """ self.threshold = threshold @abstractmethod def detect(self, datapoints): """ Takes datapoints as input and outputs a detection signal. Args: datapoints: list of lists of n channels: may contain several datapoints. A datapoint is a list of n floats, 1 for each channel. In the current version of Portiloop, there is always only one datapoint per datapoints list. Returns: signal: Object: output detection signal (for instance, the output of a neural network); this output signal is the input of the Stimulator.stimulate method. If you don't mean to use a Stimulator, you can simply return None. """ raise NotImplementedError # Example implementation for sleep spindles: DEFAULT_MODEL_PATH = str(Path(__file__).parent / "models/portiloop_model_quant.tflite") # print(DEFAULT_MODEL_PATH) class SleepSpindleRealTimeDetector(Detector): def __init__(self, threshold=0.5, num_models_parallel=8, window_size=54, seq_stride=42, model_path=None, verbose=False, channel=2): model_path = DEFAULT_MODEL_PATH if model_path is None else model_path self.verbose = verbose self.channel = channel self.num_models_parallel = num_models_parallel self.interpreters = [] for i in range(self.num_models_parallel): self.interpreters.append(edgetpu.make_interpreter(model_path)) self.interpreters[i].allocate_tensors() self.interpreter_counter = 0 self.input_details = self.interpreters[0].get_input_details() self.output_details = self.interpreters[0].get_output_details() self.buffer = [] self.seq_stride = seq_stride self.window_size = window_size self.stride_counters = [np.floor((self.seq_stride / self.num_models_parallel) * (i + 1)) for i in range(self.num_models_parallel)] for idx in reversed(range(1, len(self.stride_counters))): self.stride_counters[idx] -= self.stride_counters[idx-1] assert sum(self.stride_counters) == self.seq_stride, f"{self.stride_counters} does not sum to {self.seq_stride}" self.h = [np.zeros((1, 7), dtype=np.int8) for _ in range(self.num_models_parallel)] self.current_stride_counter = self.stride_counters[0] - 1 super().__init__(threshold) def detect(self, datapoints): res = [] for inp in datapoints: result = self.add_datapoint(inp) if result is not None: res.append(result >= self.threshold) return res def add_datapoint(self, input_float): input_float = input_float[self.channel - 1] result = None self.buffer.append(input_float) if len(self.buffer) > self.window_size: self.buffer = self.buffer[1:] self.current_stride_counter += 1 if self.current_stride_counter == self.stride_counters[self.interpreter_counter]: result = self.call_model(self.interpreter_counter, self.buffer) self.interpreter_counter += 1 self.interpreter_counter %= self.num_models_parallel self.current_stride_counter = 0 return result def call_model(self, idx, input_float=None): if input_float is None: # For debugging purposes input_shape = self.input_details[0]['shape'] input = np.array(np.random.random_sample(input_shape), dtype=np.int8) else: # Convert float input to Int input_scale, input_zero_point = self.input_details[0]["quantization"] input = np.asarray(input_float) / input_scale + input_zero_point input = input.astype(self.input_details[0]["dtype"]) input = input.reshape((1, 1, -1)) # TODO: Milo please implement this: # self.interpreters[idx].set_tensor(self.input_details[0]['index'], (self.h[idx], input)) # if self.verbose: # start_time = time.time() # self.interpreters[idx].invoke() # if self.verbose: # end_time = time.time() # output, self.h[idx] = self.interpreters[idx].get_tensor(self.output_details[0]['index']) # output_scale, output_zero_point = self.input_details[0]["quantization"] # output = float(output - output_zero_point) * output_scale # TODO: remove this line: output = np.random.uniform() # FIXME: remove if self.verbose: print(f"Computed output {output} in {end_time - start_time} seconds") return output