Spaces:
Sleeping
Sleeping
Commit
·
f74a1ac
1
Parent(s):
62323ee
Fixed bug with timing of the stimulation for offline
Browse files
portiloop/notebooks/test_EDF.ipynb
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 70,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from pyedflib import highlevel\n",
|
10 |
+
"from portiloop.src.demo.utils import xdf2array\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"\n",
|
13 |
+
"filename_edf = '/home/ubuntu/portiloop-software/BSP_L22_Portiloop_EDF.edf'\n",
|
14 |
+
"filename_xdf = '/home/ubuntu/portiloop-software/BSP_L22_Portiloop_XDF.xdf'"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 98,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"data": {
|
24 |
+
"text/plain": [
|
25 |
+
"(1147000,)"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
"execution_count": 98,
|
29 |
+
"metadata": {},
|
30 |
+
"output_type": "execute_result"
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"edf_read = highlevel.read_edf(filename_edf)\n",
|
35 |
+
"signal_edf = edf_read[0][1, :]\n",
|
36 |
+
"signal_edf.shape"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 99,
|
42 |
+
"metadata": {},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"data_whole, columns = xdf2array(filename_xdf, 2)"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 100,
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"data": {
|
55 |
+
"text/plain": [
|
56 |
+
"(1142166,)"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
"execution_count": 100,
|
60 |
+
"metadata": {},
|
61 |
+
"output_type": "execute_result"
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"source": [
|
65 |
+
"signal_xdf = data_whole[:, columns.index(\"online_filtered_signal_portiloop\")]\n",
|
66 |
+
"signal_xdf.shape"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 101,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"data": {
|
76 |
+
"text/plain": [
|
77 |
+
"4834"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
"execution_count": 101,
|
81 |
+
"metadata": {},
|
82 |
+
"output_type": "execute_result"
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"source": [
|
86 |
+
"len(signal_edf) - len(signal_xdf)"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 102,
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [
|
94 |
+
{
|
95 |
+
"data": {
|
96 |
+
"text/plain": [
|
97 |
+
"0"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
"execution_count": 102,
|
101 |
+
"metadata": {},
|
102 |
+
"output_type": "execute_result"
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"source": [
|
106 |
+
"np.isin(signal_edf, signal_xdf).sum()"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "code",
|
111 |
+
"execution_count": 103,
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [
|
114 |
+
{
|
115 |
+
"name": "stdout",
|
116 |
+
"output_type": "stream",
|
117 |
+
"text": [
|
118 |
+
"-0.020828564888990615 != -0.3275071084499359\n"
|
119 |
+
]
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"source": [
|
123 |
+
"print(f\"{signal_edf[10000]} != {signal_xdf[10000]}\")"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 104,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"data": {
|
133 |
+
"text/plain": [
|
134 |
+
"(array([], dtype=int64),)"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
"execution_count": 104,
|
138 |
+
"metadata": {},
|
139 |
+
"output_type": "execute_result"
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"source": [
|
143 |
+
"np.where(signal_edf == signal_xdf[100000])"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": 105,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"# signal_xdf = np.concatenate([signal_xdf, np.zeros(len(signal_edf) - len(signal_xdf))])"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 106,
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [],
|
160 |
+
"source": [
|
161 |
+
"# signals = np.concatenate((np.expand_dims(signal_edf, 0), np.expand_dims(signal_xdf, 0)), axis = 0)"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 107,
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [
|
169 |
+
{
|
170 |
+
"data": {
|
171 |
+
"text/plain": [
|
172 |
+
"(2, 1147000)"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
"execution_count": 107,
|
176 |
+
"metadata": {},
|
177 |
+
"output_type": "execute_result"
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"source": [
|
181 |
+
"# signals.shape"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 108,
|
187 |
+
"metadata": {},
|
188 |
+
"outputs": [
|
189 |
+
{
|
190 |
+
"data": {
|
191 |
+
"text/plain": [
|
192 |
+
"True"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
"execution_count": 108,
|
196 |
+
"metadata": {},
|
197 |
+
"output_type": "execute_result"
|
198 |
+
}
|
199 |
+
],
|
200 |
+
"source": [
|
201 |
+
"# # Create and edf file with both signals:\n",
|
202 |
+
"# channel_names = ['EDF_Data', \"XDF_Data\"]\n",
|
203 |
+
"# signal_headers = highlevel.make_signal_headers(channel_names, sample_frequency=250)\n",
|
204 |
+
"# headers = highlevel.make_header(patientname='L22', gender='Male')\n",
|
205 |
+
"\n",
|
206 |
+
"\n",
|
207 |
+
"# highlevel.write_edf('edf_file.edf', signals, signal_headers, headers)"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": 145,
|
213 |
+
"metadata": {},
|
214 |
+
"outputs": [],
|
215 |
+
"source": [
|
216 |
+
"from portiloop.src.demo.utils import OfflineSleepSpindleRealTimeStimulator\n",
|
217 |
+
"from portiloop.src.detection import SleepSpindleRealTimeDetector\n",
|
218 |
+
"from portiloop.src.processing import FilterPipeline\n",
|
219 |
+
"\n",
|
220 |
+
"\n",
|
221 |
+
"filter = FilterPipeline(nb_channels=1, sampling_rate=250)\n",
|
222 |
+
"detector = SleepSpindleRealTimeDetector(threshold=0.82, channel=1) # always 1 because we have only one channel\n",
|
223 |
+
"stimulator = OfflineSleepSpindleRealTimeStimulator()"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 143,
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [
|
231 |
+
{
|
232 |
+
"name": "stdout",
|
233 |
+
"output_type": "stream",
|
234 |
+
"text": [
|
235 |
+
"Running online filtering and detection...\n"
|
236 |
+
]
|
237 |
+
}
|
238 |
+
],
|
239 |
+
"source": [
|
240 |
+
"print(\"Running online filtering and detection...\")\n",
|
241 |
+
"\n",
|
242 |
+
"points = []\n",
|
243 |
+
"online_activations = []\n",
|
244 |
+
"delayed_stims = []\n",
|
245 |
+
"\n",
|
246 |
+
"# Go through the data\n",
|
247 |
+
"for index, point in enumerate(signal_xdf):\n",
|
248 |
+
" # Filter the data\n",
|
249 |
+
" filtered_point = filter.filter(np.array([point]))\n",
|
250 |
+
"\n",
|
251 |
+
" filtered_point = filtered_point.tolist()\n",
|
252 |
+
" points.append(filtered_point[0])\n",
|
253 |
+
" # Detect the spindles\n",
|
254 |
+
" result = detector.detect([[point]])\n",
|
255 |
+
"\n",
|
256 |
+
" # if stimulation_phase != \"Fast\":\n",
|
257 |
+
" # delayed_stim = stimulation_delayer.step_timesteps(filtered_point[0])\n",
|
258 |
+
" # if delayed_stim:\n",
|
259 |
+
" # delayed_stims.append(1)\n",
|
260 |
+
" # else:\n",
|
261 |
+
" # delayed_stims.append(0)\n",
|
262 |
+
"\n",
|
263 |
+
" # Stimulate if necessary\n",
|
264 |
+
" stim = stimulator.stimulate(result)\n",
|
265 |
+
" if stim:\n",
|
266 |
+
" online_activations.append(1)\n",
|
267 |
+
" else:\n",
|
268 |
+
" online_activations.append(0)"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": 144,
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [
|
276 |
+
{
|
277 |
+
"data": {
|
278 |
+
"text/plain": [
|
279 |
+
"1147000"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
"execution_count": 144,
|
283 |
+
"metadata": {},
|
284 |
+
"output_type": "execute_result"
|
285 |
+
}
|
286 |
+
],
|
287 |
+
"source": [
|
288 |
+
"len(online_activations)"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": 141,
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [
|
296 |
+
{
|
297 |
+
"data": {
|
298 |
+
"text/plain": [
|
299 |
+
"31"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"execution_count": 141,
|
303 |
+
"metadata": {},
|
304 |
+
"output_type": "execute_result"
|
305 |
+
}
|
306 |
+
],
|
307 |
+
"source": [
|
308 |
+
"sum(online_activations)"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": null,
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [],
|
316 |
+
"source": []
|
317 |
+
}
|
318 |
+
],
|
319 |
+
"metadata": {
|
320 |
+
"kernelspec": {
|
321 |
+
"display_name": "venv",
|
322 |
+
"language": "python",
|
323 |
+
"name": "python3"
|
324 |
+
},
|
325 |
+
"language_info": {
|
326 |
+
"codemirror_mode": {
|
327 |
+
"name": "ipython",
|
328 |
+
"version": 3
|
329 |
+
},
|
330 |
+
"file_extension": ".py",
|
331 |
+
"mimetype": "text/x-python",
|
332 |
+
"name": "python",
|
333 |
+
"nbconvert_exporter": "python",
|
334 |
+
"pygments_lexer": "ipython3",
|
335 |
+
"version": "3.10.6"
|
336 |
+
},
|
337 |
+
"orig_nbformat": 4,
|
338 |
+
"vscode": {
|
339 |
+
"interpreter": {
|
340 |
+
"hash": "dd88f1663b1efd7dd128096061ae4c3f92be53565689be8013239d96443491e7"
|
341 |
+
}
|
342 |
+
}
|
343 |
+
},
|
344 |
+
"nbformat": 4,
|
345 |
+
"nbformat_minor": 2
|
346 |
+
}
|
portiloop/src/demo/utils.py
CHANGED
@@ -43,18 +43,21 @@ class OfflineSleepSpindleRealTimeStimulator(Stimulator):
|
|
43 |
def __init__(self):
|
44 |
self.last_detected_ts = time.time()
|
45 |
self.wait_t = 0.4 # 400 ms
|
|
|
46 |
self.delayer = None
|
|
|
47 |
|
48 |
def stimulate(self, detection_signal):
|
|
|
49 |
stim = False
|
50 |
for sig in detection_signal:
|
51 |
# We detect a stimulation
|
52 |
if sig:
|
53 |
# Record time of stimulation
|
54 |
-
ts =
|
55 |
|
56 |
# Check if time since last stimulation is long enough
|
57 |
-
if ts - self.last_detected_ts > self.
|
58 |
if self.delayer is not None:
|
59 |
# If we have a delayer, notify it
|
60 |
self.delayer.detected()
|
@@ -86,7 +89,6 @@ def xdf2array(xdf_path, channel):
|
|
86 |
|
87 |
# Add all samples from raw and filtered signals
|
88 |
csv_list = []
|
89 |
-
diffs = []
|
90 |
shortest_stream = min(int(filtered_stream['footer']['info']['sample_count'][0]),
|
91 |
int(raw_stream['footer']['info']['sample_count'][0]))
|
92 |
for i in range(shortest_stream):
|
@@ -99,7 +101,6 @@ def xdf2array(xdf_path, channel):
|
|
99 |
datapoint = [filtered_stream['time_stamps'][i],
|
100 |
float(filtered_stream['time_series'][i, channel-1]),
|
101 |
raw_stream['time_series'][i, channel-1]]
|
102 |
-
diffs.append(abs(filtered_stream['time_stamps'][i] - raw_stream['time_stamps'][i]))
|
103 |
csv_list.append(datapoint)
|
104 |
|
105 |
# Add markers
|
|
|
43 |
def __init__(self):
|
44 |
self.last_detected_ts = time.time()
|
45 |
self.wait_t = 0.4 # 400 ms
|
46 |
+
self.wait_timesteps = int(self.wait_t * 250)
|
47 |
self.delayer = None
|
48 |
+
self.index = 0
|
49 |
|
50 |
def stimulate(self, detection_signal):
|
51 |
+
self.index += 1
|
52 |
stim = False
|
53 |
for sig in detection_signal:
|
54 |
# We detect a stimulation
|
55 |
if sig:
|
56 |
# Record time of stimulation
|
57 |
+
ts = self.index
|
58 |
|
59 |
# Check if time since last stimulation is long enough
|
60 |
+
if ts - self.last_detected_ts > self.wait_timesteps:
|
61 |
if self.delayer is not None:
|
62 |
# If we have a delayer, notify it
|
63 |
self.delayer.detected()
|
|
|
89 |
|
90 |
# Add all samples from raw and filtered signals
|
91 |
csv_list = []
|
|
|
92 |
shortest_stream = min(int(filtered_stream['footer']['info']['sample_count'][0]),
|
93 |
int(raw_stream['footer']['info']['sample_count'][0]))
|
94 |
for i in range(shortest_stream):
|
|
|
101 |
datapoint = [filtered_stream['time_stamps'][i],
|
102 |
float(filtered_stream['time_series'][i, channel-1]),
|
103 |
raw_stream['time_series'][i, channel-1]]
|
|
|
104 |
csv_list.append(datapoint)
|
105 |
|
106 |
# Add markers
|