Spaces:
Sleeping
Sleeping
Milo Sobral
commited on
Commit
·
bf3350c
1
Parent(s):
986653d
Done with sleep staging but needs checking
Browse files
portiloop/src/demo/offline.py
CHANGED
@@ -2,7 +2,7 @@ import numpy as np
|
|
2 |
from portiloop.src.detection import SleepSpindleRealTimeDetector
|
3 |
from portiloop.src.stimulation import UpStateDelayer
|
4 |
from portiloop.src.processing import FilterPipeline
|
5 |
-
from portiloop.src.demo.utils import compute_output_table, xdf2array, offline_detect, offline_filter, OfflineSleepSpindleRealTimeStimulator
|
6 |
import gradio as gr
|
7 |
|
8 |
|
@@ -29,6 +29,7 @@ def run_offline(xdf_file, detect_filter_opts, threshold, channel_num, freq, stim
|
|
29 |
# Read the xdf file to a numpy array
|
30 |
print("Loading xdf file...")
|
31 |
data_whole, columns = xdf2array(xdf_file.name, int(channel_num))
|
|
|
32 |
# Do the offline filtering of the data
|
33 |
if offline_filtering:
|
34 |
print("Filtering offline...")
|
@@ -38,13 +39,18 @@ def run_offline(xdf_file, detect_filter_opts, threshold, channel_num, freq, stim
|
|
38 |
data_whole = np.concatenate((data_whole, offline_filtered_data), axis=1)
|
39 |
columns.append("offline_filtered_signal")
|
40 |
|
|
|
|
|
|
|
|
|
|
|
41 |
# Do Wamsley's method
|
42 |
if wamsley:
|
43 |
print("Running Wamsley detection...")
|
44 |
wamsley_data = offline_detect("Wamsley", \
|
45 |
data_whole[:, columns.index("offline_filtered_signal")],\
|
46 |
data_whole[:, columns.index("time_stamps")],\
|
47 |
-
freq)
|
48 |
wamsley_data = np.expand_dims(wamsley_data, axis=1)
|
49 |
data_whole = np.concatenate((data_whole, wamsley_data), axis=1)
|
50 |
columns.append("wamsley_spindles")
|
@@ -55,7 +61,7 @@ def run_offline(xdf_file, detect_filter_opts, threshold, channel_num, freq, stim
|
|
55 |
lacourse_data = offline_detect("Lacourse", \
|
56 |
data_whole[:, columns.index("offline_filtered_signal")],\
|
57 |
data_whole[:, columns.index("time_stamps")],\
|
58 |
-
freq)
|
59 |
lacourse_data = np.expand_dims(lacourse_data, axis=1)
|
60 |
data_whole = np.concatenate((data_whole, lacourse_data), axis=1)
|
61 |
columns.append("lacourse_spindles")
|
|
|
2 |
from portiloop.src.detection import SleepSpindleRealTimeDetector
|
3 |
from portiloop.src.stimulation import UpStateDelayer
|
4 |
from portiloop.src.processing import FilterPipeline
|
5 |
+
from portiloop.src.demo.utils import compute_output_table, sleep_stage, xdf2array, offline_detect, offline_filter, OfflineSleepSpindleRealTimeStimulator
|
6 |
import gradio as gr
|
7 |
|
8 |
|
|
|
29 |
# Read the xdf file to a numpy array
|
30 |
print("Loading xdf file...")
|
31 |
data_whole, columns = xdf2array(xdf_file.name, int(channel_num))
|
32 |
+
|
33 |
# Do the offline filtering of the data
|
34 |
if offline_filtering:
|
35 |
print("Filtering offline...")
|
|
|
39 |
data_whole = np.concatenate((data_whole, offline_filtered_data), axis=1)
|
40 |
columns.append("offline_filtered_signal")
|
41 |
|
42 |
+
# Do the sleep staging approximation
|
43 |
+
if wamsley or lacourse:
|
44 |
+
print("Sleep staging...")
|
45 |
+
mask = sleep_stage(data_whole[:, columns.index("offline_filtered_signal")], threshold=150, group_size=100)
|
46 |
+
|
47 |
# Do Wamsley's method
|
48 |
if wamsley:
|
49 |
print("Running Wamsley detection...")
|
50 |
wamsley_data = offline_detect("Wamsley", \
|
51 |
data_whole[:, columns.index("offline_filtered_signal")],\
|
52 |
data_whole[:, columns.index("time_stamps")],\
|
53 |
+
freq, mask)
|
54 |
wamsley_data = np.expand_dims(wamsley_data, axis=1)
|
55 |
data_whole = np.concatenate((data_whole, wamsley_data), axis=1)
|
56 |
columns.append("wamsley_spindles")
|
|
|
61 |
lacourse_data = offline_detect("Lacourse", \
|
62 |
data_whole[:, columns.index("offline_filtered_signal")],\
|
63 |
data_whole[:, columns.index("time_stamps")],\
|
64 |
+
freq, mask)
|
65 |
lacourse_data = np.expand_dims(lacourse_data, axis=1)
|
66 |
data_whole = np.concatenate((data_whole, lacourse_data), axis=1)
|
67 |
columns.append("lacourse_spindles")
|
portiloop/src/demo/test_offline.py
CHANGED
@@ -4,6 +4,8 @@ from portiloop.src.demo.offline import run_offline
|
|
4 |
from pathlib import Path
|
5 |
import matplotlib.pyplot as plt
|
6 |
|
|
|
|
|
7 |
class TestOffline(unittest.TestCase):
|
8 |
|
9 |
def setUp(self):
|
@@ -21,7 +23,7 @@ class TestOffline(unittest.TestCase):
|
|
21 |
all_options_iterator = itertools.product(*map(combinatorial_config.get, keys))
|
22 |
all_options_dicts = [dict(zip(keys, values)) for values in all_options_iterator]
|
23 |
self.filtered_options = [value for value in all_options_dicts if (value['online_detection'] and value['online_filtering']) or not value['online_detection']]
|
24 |
-
self.xdf_file = Path(__file__).parents[3] / "
|
25 |
|
26 |
|
27 |
def test_all_options(self):
|
@@ -32,7 +34,7 @@ class TestOffline(unittest.TestCase):
|
|
32 |
def test_single_option(self):
|
33 |
|
34 |
# Test options correspond to an index in the possible checkbox group options
|
35 |
-
test_options = [
|
36 |
|
37 |
res = list(run_offline(
|
38 |
self.xdf_file,
|
@@ -43,6 +45,7 @@ class TestOffline(unittest.TestCase):
|
|
43 |
stimulation_phase="Peak",
|
44 |
buffer_time=0.3))
|
45 |
print(res)
|
|
|
46 |
|
47 |
def tearDown(self):
|
48 |
pass
|
|
|
4 |
from pathlib import Path
|
5 |
import matplotlib.pyplot as plt
|
6 |
|
7 |
+
from portiloop.src.demo.utils import sleep_stage, xdf2array
|
8 |
+
|
9 |
class TestOffline(unittest.TestCase):
|
10 |
|
11 |
def setUp(self):
|
|
|
23 |
all_options_iterator = itertools.product(*map(combinatorial_config.get, keys))
|
24 |
all_options_dicts = [dict(zip(keys, values)) for values in all_options_iterator]
|
25 |
self.filtered_options = [value for value in all_options_dicts if (value['online_detection'] and value['online_filtering']) or not value['online_detection']]
|
26 |
+
self.xdf_file = Path(__file__).parents[3] / "test_file.xdf"
|
27 |
|
28 |
|
29 |
def test_all_options(self):
|
|
|
34 |
def test_single_option(self):
|
35 |
|
36 |
# Test options correspond to an index in the possible checkbox group options
|
37 |
+
test_options = [0, 1, 2]
|
38 |
|
39 |
res = list(run_offline(
|
40 |
self.xdf_file,
|
|
|
45 |
stimulation_phase="Peak",
|
46 |
buffer_time=0.3))
|
47 |
print(res)
|
48 |
+
pass
|
49 |
|
50 |
def tearDown(self):
|
51 |
pass
|
portiloop/src/demo/utils.py
CHANGED
@@ -13,6 +13,32 @@ STREAM_NAMES = {
|
|
13 |
}
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
class OfflineSleepSpindleRealTimeStimulator(Stimulator):
|
17 |
def __init__(self):
|
18 |
self.last_detected_ts = time.time()
|
@@ -87,15 +113,19 @@ def xdf2array(xdf_path, channel):
|
|
87 |
return np.array(csv_list), columns
|
88 |
|
89 |
|
90 |
-
def offline_detect(method, data, timesteps, freq):
|
|
|
|
|
|
|
91 |
# Get the spindle data from the offline methods
|
92 |
time = np.arange(0, len(data)) / freq
|
|
|
93 |
if method == "Lacourse":
|
94 |
detector = DetectSpindle(method='Lacourse2018')
|
95 |
-
spindles, _, _ = detect_Lacourse2018(
|
96 |
elif method == "Wamsley":
|
97 |
detector = DetectSpindle(method='Wamsley2012')
|
98 |
-
spindles, _, _ = detect_Wamsley2012(
|
99 |
else:
|
100 |
raise ValueError("Invalid method")
|
101 |
|
@@ -155,3 +185,4 @@ def compute_output_table(online_stimulation, lacourse_spindles, wamsley_spindles
|
|
155 |
if wamsley_spindles is not None:
|
156 |
table += f"| Wamsley | {wamsley_spindles_count} | {both_online_wamsley} |\n"
|
157 |
return table
|
|
|
|
13 |
}
|
14 |
|
15 |
|
16 |
+
def sleep_stage(data, threshold=150, group_size=2):
|
17 |
+
"""Sleep stage approximation using a threshold and a group size.
|
18 |
+
Returns a numpy array containing all indices in the input data which CAN be used for offline detection.
|
19 |
+
These indices can then be used to reconstruct the signal from the original data.
|
20 |
+
"""
|
21 |
+
# Find all indexes where the signal is above or below the threshold
|
22 |
+
above = np.where(data > threshold)
|
23 |
+
below = np.where(data < -threshold)
|
24 |
+
indices = np.concatenate((above, below), axis=1)[0]
|
25 |
+
|
26 |
+
indices = np.sort(indices)
|
27 |
+
# Get all the indices where the difference between two consecutive indices is larger than 100
|
28 |
+
groups = np.where(np.diff(indices) <= group_size)[0] + 1
|
29 |
+
# Get the important indices
|
30 |
+
important_indices = indices[groups]
|
31 |
+
# Get all the indices between the important indices
|
32 |
+
group_filler = [np.arange(indices[groups[n] - 1] + 1, index) for n, index in enumerate(important_indices)]
|
33 |
+
# Create flat array from fillers
|
34 |
+
group_filler = np.concatenate(group_filler)
|
35 |
+
# Append all group fillers to the indices
|
36 |
+
masked_indices = np.sort(np.concatenate((indices, group_filler)))
|
37 |
+
unmasked_indices = np.setdiff1d(np.arange(len(data)), masked_indices)
|
38 |
+
|
39 |
+
return unmasked_indices
|
40 |
+
|
41 |
+
|
42 |
class OfflineSleepSpindleRealTimeStimulator(Stimulator):
|
43 |
def __init__(self):
|
44 |
self.last_detected_ts = time.time()
|
|
|
113 |
return np.array(csv_list), columns
|
114 |
|
115 |
|
116 |
+
def offline_detect(method, data, timesteps, freq, mask):
|
117 |
+
# Extract only the interesting elements from the mask
|
118 |
+
data_masked = data[mask]
|
119 |
+
|
120 |
# Get the spindle data from the offline methods
|
121 |
time = np.arange(0, len(data)) / freq
|
122 |
+
time_masked = time[mask]
|
123 |
if method == "Lacourse":
|
124 |
detector = DetectSpindle(method='Lacourse2018')
|
125 |
+
spindles, _, _ = detect_Lacourse2018(data_masked, freq, time_masked, detector)
|
126 |
elif method == "Wamsley":
|
127 |
detector = DetectSpindle(method='Wamsley2012')
|
128 |
+
spindles, _, _ = detect_Wamsley2012(data_masked, freq, time_masked, detector)
|
129 |
else:
|
130 |
raise ValueError("Invalid method")
|
131 |
|
|
|
185 |
if wamsley_spindles is not None:
|
186 |
table += f"| Wamsley | {wamsley_spindles_count} | {both_online_wamsley} |\n"
|
187 |
return table
|
188 |
+
|